Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017

UMass Amherst microbiologists, international team show fungal deconstruction of wood

Twenty years ago, microbiologist Barry Goodell, now a professor at the University of Massachusetts Amherst, and colleagues discovered a unique system that some microorganisms use to digest and recycle wood. Three orders of "brown rot fungi" have now been identified that can break down biomass, but details of the mechanism were not known.


Basidiomycota brown rot fungi use a non-enzymatic, chelator-mediated biocatalysis method to digest woody biomass that is very different than methods used by any other microorganism studied, say Barry Goodell and colleagues at UMass Amherst, working with an international team.

Credit: Karel Tejkal, used with permission

Now, using several complementary research tools, Goodell and colleagues report new details of this unexpected mechanism at work, one that surprisingly does not involve enzymes, the usual accelerators of chemical reactions. Instead, Basidiomycota brown rot fungi, use a non-enzymatic, chelator-mediated biocatalysis method that is "very different than that used by any other microorganism studied," he says. Chelators are organic compounds that bind metal ions, and in this case, they also generate "hydroxyl radicals" to break down wood and produce simple building-block chemicals.

Described by collaborators at Oak Ridge National Laboratory as "a paradigm shift in understanding fungal biocatalysis for biomass conversion," the findings appear in the current issue of Biotechnology for Biofuels. Goodell says, "Our research on fungal bioconversion systems looks at a novel mechanism that has potential use in bio-refineries to 'deconstruct' woody biomass for conversion into platform chemicals for biopolymers or energy products."

Brown rot fungi appear in both the northern and southern hemispheres and are some of the most common decay fungi in North America. Because they evolved relatively recently, there are fewer brown rot species compared to older white rot species. "However, because of their efficiency in degrading wood, brown rot fungi have come to dominate, particularly in degrading softwoods," Goodell says, and they now dominate by recycling approximately 80 percent of the softwood biomass carbon in the world, found mostly in the great forests of the northern hemisphere.

Goodell points out that most microorganisms use enzymes to break down compounds, but enzymes are huge molecules and physiologically "expensive" to produce because they contain so much nitrogen. "Scientists used to think that these fungi would make holes in the cell wall that would let in the big enzymes," he notes, a sort of pretreatment model. "But as we explain here, that is not how it works."

"The fungi we study use a non-enzymatic, catalytic chelator-mediated Fenton system instead, a very simple process that makes use of hydrogen peroxide, also generated by the fungal system, and iron found in the environment," Goodell says. He adds that he and colleagues believe the brown rot fungi's efficiency comes from their use of the chelator-mediated Fenton system rather than the use of enzymes exclusively, as white rot fungi do.

Goodell notes, "This group of brown rot fungi figured out how to generate hydroxyl radicals at a distance, that is, away from the fungus, to keep them away so the radicals won't damage themselves while breaking down wood." Hydroxyl radicals are very damaging to cells, the most potent oxidizing agents known in biological systems.

For this work, Goodell and colleagues including his collaborator Jody Jellison, now director of the Center for Agriculture, Food and the Environment at UMass Amherst, used a suite of investigative methods including small angle neutron scattering (SANS), sum frequency generation (SFG) spectroscopy, Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) to fully describe the process.

Goodell says, "These fungi do produce a limited number of enzymes, but they come into play after the non-enzymatic action conversion by the fungi using chelators. The chelators are secondary metabolites, whose function is not easily followed using 'omics' techniques such as genomics. Using many advanced techniques though, we saw that some very small, low-molecular-weight compounds were working their way into the cell wall. This new paper describes how."

Goodell and Jellison relate a process that begins with the fungi in the lumen - the hollow space found inside plant cells. Using their hyphae, thread-like growth filaments, the fungi then mount a biochemical attack on the wood cell components.

As Goodell explains, "This group of fungi evolved a way to break down the wood substrate by first diffusing chelators into the cell wall. The fungus makes the chelator and produces hydrogen peroxide from oxygen, and together they start to digest the cell wall into the sugar found in the basic building block of wood, glucose, which the fungus can use as food. This is how these fungi are eating the wood."

###

Goodell and Jellison's collaborators include scientists at the Chinese Academy of Sciences, Beijing; Pennsylvania State University; Swansea University, U.K.; University of Agricultural Science, Uppsala, Sweden; Tokyo University of Agriculture and Technology; USDA Forest Service Southern Research Station, Pineville, La., and Oak Ridge National Laboratory, Tenn. Funding was from these organizations and the U.S. Department of Energy, and USDA National Institute of Food and Agriculture.

Media Contact

Janet Lathrop
jlathrop@umass.edu
413-545-0444

 @umassscience

http://www.umass.edu 

Janet Lathrop | EurekAlert!

Further reports about: biomass enzymes fungi fungus hydrogen peroxide hydroxyl radicals microorganisms radicals

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>