Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungi – a promising source of chemical diversity

27.05.2016

The fungus Aspergillus fumigatus produces a group of previously unknown natural products. With reference to plant isoquinoline alkaloids, these substances have been named fumisoquins. Researchers from Jena discovered the novel substances together with their American colleagues while studying the fungal genome. The family of isoquinoline alkaloids contains many pharmacologically active molecules. This study, which has just been published in Nature Chemical Biology, shows that fungi and plants developed biosynthetic pathways independently of each other. These findings make Aspergillus an interesting target for the discovery of novel drugs and their biotechnological production.

A large number of drugs used today originate from nature. Most of these molecules, which can be found with or without synthetic modifications and exert their beneficial effect on human health, are derived from microorganisms or plants. Thus, it is of great interest to discover novel active compounds in nature and use them for the treatment of diseases.


The fungus Aspergillus fumigatus produces Fumisoquine in a way similar to plants.

Jeannette Schmaler-Ripcke, Florian Kloss, Luo Yu / HKI


Breadseed poppies Papaver somniferum as well as many other poppy and barberry plants produce many Isochinoline alkaloids.

Dirk Hoffmeister / FSU

One well-known group of plant metabolites are the isoquinoline alkaloids. Today more than 2,500 different types are known and they are mainly found in poppy and barberry plants. Famous examples include the painkiller morphine or the cough remedy codein.

Together with colleagues from the US, scientists in the labs of Dirk Hoffmeister and Axel Brakhage at the Friedrich Schiller University in Jena found out that fungi synthesize certain natural products in a very similar way to plants.

They analyzed the genome of the common mold Aspergillus and discovered a small cluster of genes whose function was previously unknown. Comparing these genetic sequences with known data implied that they might be responsible for the synthesis of novel natural products.

By manipulating the genetic sequences, characterizing the resulting metabolites and using radioactive labeling experiments it was possible to elucidate the structure of the novel molecules and to unravel the detailed biosynthetic pathways.

The researchers discovered a new linkage mechanism for carbon atoms which had never been seen before in fungi. The whole fumisoquin biosynthetic pathway appears to be a combination of plant biosynthetic principles and the non-ribosomal peptide synthetases commonly found in fungi.

Axel Brakhage, university professor and head of the Leibniz Institute for Natural Product Research and Infection Biology, explains: “Fungi and plants diverged early on during evolution. The newly discovered fumisoquin synthesis pathway shows that there was a parallel development for the production of isoquinoline alkaloid compounds in both groups of organisms. This opens up new roads for combinatorial biotechnology in order to advance the search for novel active compounds and thus to develop urgently needed new drugs.”

Dirk Hoffmeister, professor at the Institute for Pharmacy at Friedrich Schiller University, is pleased with the joint efforts: “The published study is a great example of the tight collaboration between the university and the Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute – and our American partners. Good research does not know any borders.”

The international scientific association “Faculty of 1000“ included this publication in their hit list of seminal research results.

Dr. Michael Ramm | idw - Informationsdienst Wissenschaft
Further information:
http://www.hki-jena.de

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>