Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Functional Magnetic Resonance Imaging under the Magnifying Glass

08.11.2012
Tübinger scientists reveal laminar differences in neurovascular coupling between positive and negative BOLD responses.

The cortex consists of six different layers, which vary in their anatomical and physiological properties. It plays a key role in the cognitive capacities of the brain. Since the cortical layers are segregated functionally, we could potentially say something about the neural processes that take place when an area is activated if we could see different signals in the different layers.


A: The stimulus used to elicit positive and negative BOLD responses in the visual cortex;
B: Positive and negative BOLD responses in monkey primary visual cortex to a visual stimulus;
C: The cerebral blood volume (CBV) response to a visual stimulus is increased in the entire primary visual cortex.

Jozien Goense / Max Planck Institute for Biologische Cybernetics, Tübingen

Jozien Goense from the Max Planck Institute for Biological Cybernetics in Tübingen, Germany and her colleagues used functional Magnetic Resonance Imaging (fMRI) to observe these layer-specific neural processes within the cortex and found different mechanisms for fMRI response increases and decreases as well as cortical layer-dependent differences in the neurovascular coupling mechanism.

The cortex is the outermost layer of the brain and plays a key role in perception, memory, attention, thought, language and consciousness. In mammals, it consists of six horizontal layers, each with different anatomical and physiological properties and different connectivity. These layers have so far been elusive to study in vivo, for several reasons, like a lack of spatial resolution in functional Magnetic Resonance Imaging (fMRI), the inability to see deeper layers with various optical methods, or difficulty in determining the exact recording depth of electrodes. Therefore, if we can visualize the signals in the different layers, it would allow us to better probe the cortical circuitry, for example to determine the processing steps that occur between the input and output of a given cortical area.

Functional Magnetic Resonance Imaging (fMRI) is one of the most used tools to observe the functional activity of the brain. fMRI is a non-invasive method that measures brain activity by detecting associated changes in blood flow and oxygen consumption. The primary form of fMRI uses the blood-oxygenation-level-dependent (BOLD) contrast, which reflects the oxygen concentration in the blood, and through this indicates which brain areas are activated upon a certain stimulus. However, typical fMRI studies measure activation on the scale of a few millimeters and are not able to resolve the cortical layers. Furthermore, it is also not yet known if and how layer-specific neural activity is reflected in the BOLD-response. Other functional imaging methods that are less commonly used, but can shed light on this question, are based on the cerebral blood volume (CBV), whereby the amount of blood in the activated brain region is measured, or based on cerebral blood flow (CBF). These various methods have different sensitivities and measure different aspects of the blood flow response upon neural activity.

Jozien Goense is a project leader in the Department for Physiology of Cognitive Processes headed by Nikos Logothetis at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany. She and her colleague Hellmut Merkle from the Laboratory of Functional and Molecular Imaging at the National Institutes of Health in Bethesda (USA), used high-resolution fMRI to measure BOLD-, CBV- and CBF responses to stimuli that elicit positive- and negative BOLD signals in the macaque primary visual cortex. They compared the activity patterns in response to excitatory stimuli, and stimuli that are known to give negative BOLD responses. Negative BOLD responses are reductions in the BOLD signal, often seen adjacent to stimulated regions. The negative BOLD signal is therefore thought to result from neuronal suppression.

They found that a negative BOLD response is not just the inverse of the positive response, but that it has a separate mechanism. Furthermore, the different layers responded differently to the stimuli. This indicates that the neurovascular coupling mechanism, which is the mechanism that provides the link between the neural signals and the BOLD-response, differs in the different layers and for the two stimuli. This means that potentially the layer-specific differences in the responses can be used to separate what kind of processes occur in the cortex.

These findings suggest different mechanisms for neurovascular coupling for BOLD increases and decreases as well as laminar differences in neurovascular coupling. The consequences of these findings are quite fundamental, since it may improve the interpretation of the BOLD signals in fMRI studies, and especially the negative one. Furthermore, it opens up the possibility to study neural processes within the cortical sheet, which would expand the applicability of fMRI and push it to smaller spatial scales than the ones it is currently used at.

Original Publication:
J. Goense, H. Merkle, N. K. Logothetis. (2012) High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses. Neuron, doi: 10.1016/j.neuron.2012.09.019
Contact:
Dr. Jozien Goense
Phone: +49 7071 601-1704
E-mail: jozien.goense@tuebingen.mpg.de
Stephanie Bertenbreiter (Public Relations)
Phone: +49 7071 601-1792
E-mail: presse-kyb@tuebingen.mpg.de
The Max Planck Institute for Biological Cybernetics works in the elucidation of cognitive processes. It employs about 300 people from more than 40 countries and is located at the Max Planck Campus in Tübingen, Germany. The Max Planck Institute for Biological Cybernetics is one of 80 research institutes that the Max Planck Society for the Advancement of Science maintains in Germany and abroad.

Stephanie Bertenbreiter | Max-Planck-Institut
Further information:
http://www.kyb.tuebingen.mpg.de/
http://www.tuebingen.mpg.de/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>