Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fully equipped, automated laboratory advances for clinical stem cell therapies

12.02.2019

Stem cells can offer new hope as a treatment for several serious diseases, including arthritis, diabetic complications, several cancers, liver diseases and more. Today, the production of stem cells is a complex, highly-skilled, and labour-intensive task, with a high risk of contamination or human error. Therefore, the EU funded Horizon 2020 research project “Autostem”, led by the National University of Ireland Galway (NUIG), has been working on a fully automated production line for stem cells.

At their final meeting at the Fraunhofer Institute for Production Technology IPT in Aachen, Germany, the ten international project partners from four European countries presented a whole new production platform demonstrator which was built in the three-year project for the generation of therapeutic cells at the litre scale.


Two industrial jointed-arm robots inside the system assist the fully end-to-end automated cell production.

Foto: Fraunhofer IPT

The Autostem platform concept has been designed as a user-oriented, closed, automated system to provide an efficient pipeline for the delivery of large numbers of therapeutic cells (mesenchymal stromal cells or MSCs). The process starts with a bone marrow donation, taken from the hip bone of a donor using a novel suction device developed to improve the patients’ comfort and yield.

The bone marrow can be transferred in a sterile manner into the Autostem production line, where a robotic arm supports the isolation of MSCs from the bone marrow. The production line also includes capacity for real-time process management, monitoring of cell quality and environment and maintenance of the bio-reactor.

Flexible, automated cell production platform with related software and fully integrated functional modules

This entire process involves no hands-on human operations. While the system is of course monitored by scientific staff, the cell production process is entirely automated. This removes much of the risk of error or contamination, so that the pipleline will generate large amounts of high-quality cells, suitable for use in therapy.

In addition to the novel pipeline itself, other innovations include tailored sensors that provide real-time in-process monitoring during production. Commercially available sensors track dissolved oxygen, pH and temperature, but the Autostem team have developed additional sensors to also track glucose, lactate and ammonia.

The platform represents a fully equipped, automated laboratory which will soon be working in a completely environmentally controlled area and is capable of isolating and expanding MSCs autonomously in a full end-to-end, adaptive process. Its modular and highly integrated design combines state-of-the-art laboratory equipment with novel technological developments:

The pipeline allows for close monitoring and control of production and environmental parameters and paves the way towards sophisticated production schemes that are adaptive to cell behaviour. In this way the Autostem platform has been built to deliver a significant advance towards the routine clinical application of cell therapies in the future.

Exploring commercial perspectives of the project outputs

The Autostem team which has been working together in the project represents a wealth of experience in regenerative medicine, automation and robotics, bio-reactors and cell production, regulatory affairs and quality control, over more than ten years.

The project began on 1 January 2016 and finished successfully on 31 December 2018. Finally, the researchers have been biologically validating the cells that had been produced in the project in vitro and in vivo, in order to ensure the clinical-relevance of the product.

As the prototype of the Autostem platform has been finished now, more work will be needed to allow for direct clinical use in patients, so the next steps will be exploring the markets for the project outputs. New knowledge about MSC selection and expansion, bioreactor systems, sensor technology and MSC action has been gained, which will present opportunities for further research and collaboration.

“The project is paving the way towards the cost-effective manufacture of MSCs and other therapeutic cell products in the future. Ultimately, this will benefit patients, clinicians and health systems, yielding wider societal and economic benefits”, says Dr. Mary Murphy of the National University of Ireland, Galway, Coordinator of the Autostem project.

List of international Autostem research partners

- National University of Ireland, Galway, Ireland
- Universita Degli Studi di Genova, Italy
- Fraunhofer Institute for Production Technology IPT, Germany
- University College Cork - National University Of Ireland, Cork, Ireland
- Pintail Ltd, Ireland
- Crospon Limited (now part of Medtronic), Ireland
- Zellwerk GmbH, Germany
- Cell Therapy Catapult Limited, United Kingdom
- Aston University, United Kingdom
- Orbsen Therapeutics Limited, Ireland

AUTOSTEM has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 667932. The material presented and views expressed here are the responsibility of the author(s) only. The EU Commission takes no responsibility for any use made of the information set out.

For more information please visit: www.autostem2020.eu

This press release and printable photos are also available on the internet: http://s.fhg.de/autostem2020

Wissenschaftliche Ansprechpartner:

Head of the business unit "Life sciences engineering"
Jelena Ochs M.Sc.

Fraunhofer Institute for Production Technology IPT
Steinbachstr. 17
52074 Aachen, Germany
www.ipt.fraunhofer.de
jelena.ochs@ipt.fraunhofer.de

Weitere Informationen:

https://www.ipt.fraunhofer.de/en/Press/Pressreleases/20190212_automated-laborato...

Susanne Krause | Fraunhofer-Institut für Produktionstechnologie IPT

More articles from Life Sciences:

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

nachricht Uncovering hidden protein structures
18.06.2019 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>