Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Full of hot air and proud of it

18.04.2018

University of Pittsburgh confined gas research could expand natural gas market

Of the four states of matter, gases are the hardest to pin down. Gas molecules move quickly and wildly and don't like to be confined. When confined, heat and pressure build in the container, and it doesn't take long before the gas blows the lid off the place, literally. Luckily, gases are superficial. Provide them with an attractive internal surface area, and they'll pin themselves down in no time. No, it's not love at first sight, it's adsorption.


This is an idealized interpenetrated MOF structure. The entangled MOF can dissipate heat roughly two times faster than the constituent MOFs could separately, potentially enabling more efficient gas storage.

Credit: Swanson School of Engineering

"Adsorption is the processes of gas pinning to the surface of another material--the inside walls of a container, for example," says Chris Wilmer, assistant professor in Pitt's Department of Chemical and Petroleum Engineering. "When adsorption occurs, the gas molecules stop bumping into each other, reducing pressure. So, by increasing a container's internal surface area, we can store more gas in less space."

Dr. Wilmer directs the Hypothetical Materials Lab, where he and his research group develop new ways to store, separate, and transport gases. They recently published their study "Thermal Transport in Interpenetrated Metal-Organic Frameworks" (DOI: 10.1021/acs.chemmater.7b05015) in the American Chemistry Society Journal Chemistry of Materials. The issue's cover also featured an image designed by Kutay Sezginel, a chemical engineering graduate student in Dr. Wilmer's Lab. It depicted interpenetrated metal organic frameworks or MOFs.

MOFs are a promising class of porous materials, made of metal clusters bound to organic molecules. Discovered fewer than two decades ago, MOFs help rein in gases because their porous nanostructure has an extremely high surface area and can be custom engineered to be particularly sticky to certain gas molecules. MOFs are used for a variety of functions including gas storage, gas separation, sensing, and catalysis.

In the study, the researchers discovered that MOFs can dissipate even more heat from confined gases when they are woven into each other or "interpenetrated." In fact, parallel, interpenetrated MOFs can cool off gases roughly at the same rate of two MOFs individually. In other words, gases don't mind close quarters if those quarters are MOFs.

More efficient gas storage could lead to new possibilities in sustainable energy production and use. Oil remains the preferred power source for most transportation vehicles, but natural gas is a cheaper, more abundant, and cleaner alternative. Compressed natural gas tanks are too heavy and expensive to replace traditional gasoline tanks, but adsorbed natural gas tanks are both light and cheap. A MOF tank can store same amount of fuel as typical gas tanks but with a quarter of the pressure. That's only one potential application.

"Medical oxygen tanks, storing hazardous gases from semiconductor manufacturing, and technologies that aim to capture, separate, and store carbon from the air can all benefit from MOFs," says Dr. Wilmer. "We believe MOFs have the same potential impact on the 21st century as plastics did in the 20th."

Media Contact

Paul Kovach
pkovach@pitt.edu
412-624-0265

http://www.pitt.edu 

Paul Kovach | EurekAlert!
Further information:
http://www.engineering.pitt.edu/News/2018/Wilmer-Lab-Journal-Cover/
http://dx.doi.org/10.1021/acs.chemmater.7b05015

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>