Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Full carbonate chemistry at the site of calcification in a tropical coral

17.01.2019

Coral calcification: Microscope-guided microsensor measurements reveal full carbonate chemistry at the site of calcification in a tropical coral

Researchers from the Centre Scientifique de Monaco (CSM), the Max Planck Institute for Marine Microbiology in Bremen and the University of Kiel have succeeded in directly measuring three key parameters necessary for skeleton formation in a live tropical coral.


Microcolony of the coral Stylophora pistillata, also called Smooth Cauliflower Coral, with microsensor.

Photo: Eric Tambutté, Centre Scientifique de Monaco


The coral Stylophora pistillata, also called Smooth Cauliflower Coral.

Photo: Eric Tambutté, Centre Scientifique de Monaco

This way, they completely characterized the carbonate chemistry at the site of calcification. The study has now been published in Science Advances.

Coral reefs are made up of massive calcium carbonate skeletons. The present study, published in Science Advances on January 16th 2019, reveals insights into the process of calcification, namely the process that leads to the formation of these skeletons.

Elucidating coral calcification is key to a deeper understanding and better predictions of how and why coral reefs respond to environmental changes, such as ocean acidification.

“By combining microscopy and microsensor measurements, we were able to directly measure calcium, carbonate and pH at the site of calcification in coral microcolonies of Stylophora pistillata and derive important carbonate chemistry parameters from it. We show that all measured and derived parameters are higher at the coral than in the surrounding seawater.

This points to the importance of calcium and carbon concentrating mechanisms that are actively regulated by the coral to form its skeleton,” says lead author Duygu Sevilgen, scientist at the CSM and former PhD-student at the Max-Planck-Institute for Marine Microbiology.

Measuring these key parameters at the site of calcification in live coral samples (where the first crystals are formed before they fuse to build the massive skeleton) is technically highly challenging. Previous studies using microelectrodes have been carried out “blind” and were hampered by uncertainty over correct placement of the microelectrodes in the calcifying medium.

As such, most of today’s knowledge is based on geochemical signatures in dead skeletons, rather than measurements in live corals. Sevilgen and her colleagues overcame these difficulties by using in vivo microscopy to orientate the microelectrodes into the calcifying medium, minimizing disturbance to coral physiology. “Since many years, one of our strengths at the CSM has been to culture corals under controlled conditions and develop cutting edge techniques to analyse the physiology of living corals”, says Sylvie Tambutté, research director at the CSM.

Alexander Venn, senior scientist at the CSM, further explains: “Lots of important data on the calcifying fluid are available in the literature on corals. However, values obtained by different methods show great variability. As a first step in our study, we combined two methods to measure pH (a pH sensitive fluorescent dye and pH microsensors) and optically verified that we measure at the same spot and at the same time.

By doing this we could show that when measured at the same time and place, methods indeed agree, clarifying differences in previous findings. This highlights the usefulness and importance of optical verification during the use of microsensors to ensure proper placement within the coral.”

The study presents important insights that are relevant for future microsensor and modeling approaches addressing the carbonate chemistry and dynamics during carbonate crystal formation in corals.

The work was funded by the Government of the Principality of Monaco.

Participating institutes:
Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, MC 98000 Monaco, Monaco
Max Planck Institute for Marine Microbiology, Celsiusstr. 1, DE 28359 Bremen, Germany
Christian-Albrechts-Universität zu Kiel, Hermann-Rodewald- Straße 5, DE 24118 Kiel, Germany

Wissenschaftliche Ansprechpartner:

Duygu Sevilgen (sevilgen@centrescientifique.mc)
Sylvie Tambutté (stambutte@centrescientifique.mc)
Fanni Aspetsberger (presse@mpi-bremen.de)

Originalpublikation:

“Full in vivo characterization of carbonate chemistry at the site of calcification in corals” Sevilgen DS, Venn AA, Hu MY, Tambutté E, de Beer D, Planas-Bielsa V, Tambutté S (Published in Science Advances Jan 16th 2019)
DOI: 10.1126/sciadv.aau7447

Additional quote:

For the first time, a special microsensor developed in cooperation with the University of Kiel was used to measure the carbonate concentration in areas just a few micrometers in size. "Through our precise measurement using specially developed microsensors, we were able to make a decisive contribution to determining the carbonate chemistry at the site of skeleton growth. These new findings lay an important basis for future research concerning coral adaptation mechanisms in acid marine environments," says Marian Hu from the Institute of Physiology at Kiel University.

Additional information:

Joint Press release of the Centre Scientifique de Monaco (CSM), the Max Planck Institute for Marine Microbiology in Bremen and the University of Kiel (CAU).

For further information, please contact

Duygu Sevilgen (sevilgen@centrescientifique.mc)
Sylvie Tambutté (stambutte@centrescientifique.mc) at the Centre Scientifique de Monaco
Marian Hu (marian.yongan.hu@gmail.com), Institute of Physiology, Kiel University
Fanni Aspetsberger (presse@mpi-bremen.de), Max-Planck-Institute for Marine Microbiology, Bremen

Dr. Fanni Aspetsberger | Max-Planck-Institut für Marine Mikrobiologie
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht Cell division in plants: How cell walls are assembled
20.02.2019 | Martin-Luther-Universität Halle-Wittenberg

nachricht Antibiotic resistances spread faster than so far thought
18.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Terahertz wireless makes big strides in paving the way to technological singularity

19.02.2019 | Information Technology

Researchers find trigger that turns strep infections into flesh-eating disease

19.02.2019 | Health and Medicine

Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

19.02.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>