Full-annual-cycle models track migratory bird populations throughout the year

Many birds spend only a few months of the year in their breeding range before leaving to spend the winter in another region or even on another continent, and models that only make use of data from one season may not paint a complete picture; climate change, in particular, is likely to affect breeding, migratory, and winter ranges in different ways.

For this reason, Jeffrey Hostetler, T. Scott Sillett, and Peter P. Marra of the Smithsonian Migratory Bird Center have written the first comprehensive review of the different types of full-annual-cycle modeling approaches available to ecologists, including suggestions for potential improvements and the best model types for different situations.

This Review highlights the importance of incorporating data from all parts of migratory birds' annual movements when developing demographic models to study changes in their populations.

“In discussions over the past several years, biologists repeatedly have expressed the need for full-annual-cycle models that would enable decisions about how best to target strategic conservation action,” explains Hostetler.

“Writing this paper provided an opportunity for me to explore both models that I was very familiar with and those that I was less familiar with, as well as share my own thoughts on what full-annual-cycle modeling techniques are most useful for conservation and ecological research.” He adds that much of the work in this area so far has been theoretical due to the lack of real-world data tracking bird populations as they move between different parts of their range.

“As scientists' ability to track migratory animals throughout the year continues to improve, we expect that these models will increasingly be applied.”

“As our knowledge of interactions between different components of avian annual cycles rapidly grows, it is critical that we integrate this knowledge into how we model population dynamics,” according to Ohio State University professor Chris Tonra, an expert on migratory birds' seasonal interactions who was not involved with the paper. “This Review marks a giant step forward applying the basic science of full annual cycle studies to understanding the nature of population limitation and regulation necessary for managing and conserving migratory birds.”

“Full-annual-cycle population models for migratory birds” is an open-access article available at

http://www.aoucospubs.org/doi/full/10.1642/AUK-14-211.1.

About the journal:

The Auk: Ornithological Advances is a peer-reviewed, international journal of ornithology. The journal has been the official publication of the American Ornithologists' Union since 1884. In 2009, The Auk was honored as one of the 100 most influential journals of biology and medicine over the past 100 years, and currently holds the top impact factor among ornithological journals.

Media Contact

Jeffrey Hostetler
hostetlerj@si.edu

http://www.aoucospubs.org 

Media Contact

Jeffrey Hostetler EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors