Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruitfly study: Epilepsy drug target implications for sleep disruption in brain disorders

02.04.2014

A new study in a mutant fruitfly called sleepless (sss) confirmed that the enzyme GABA transaminase, which is the target of some epilepsy drugs, contributes to sleep loss.

The findings, published online in Molecular Psychiatry, were led by Amita Sehgal, PhD, head of the Chronobiology Program at the University of Pennsylvania's Perelman School of Medicine.

Neurons in the Fly Brain

This image shows the proximity of GABA-producing neurons (green) and glia (purple) in the fly brain.

Credit: Amita Sehgal, Ph.D., Perelman School of Medicine, University of Pennsylvania

The findings shed light on mechanisms that may be shared between sleep disruption and some neurological disorders. A better understanding of this connection could enable treatments that target both types of symptoms and perhaps provide better therapeutic efficacy.

"Epilepsy is essentially an increase-in-firing disorder of the brain and maybe a decrease in activity of the neurotransmitter GABA, too," says Sehgal, who is also a professor of Neuroscience and an investigator with the Howard Hughes Medical Institute (HHMI).

... more about:
»Epilepsy »GABA »Medicine »activity »decrease »disorders »findings »sleep

"This connects our work to drugs that inhibit GABA transaminase. Changes in GABA transaminase activity are implicated in epilepsy and some other psychiatric disorders, which may account for some of the associated sleep problems."

The team looked at the proteomics of the sss mutant brain – a large-scale study of the structure and function of related proteins -- and found that GABA transaminase is increased in the sss brain compared to controls. This enzyme breaks down GABA, so GABA is decreased in the sss brain. Because GABA promotes sleep, there is a decrease in sleep in the sss mutant fly, as the name implies.

The relationship between the SSS protein and GABA is not fully understood. The SSS protein controls neural activity, and its absence results in increased neural firing, which likely uses up a lot of energy, says Sehgal.

GABA transaminase works in the mitochondria, the energy-production organelle in the glial cells of the brain, which provide fuel for neurons. The large energy demand created by the increased neural firing in sss brains probably alters mitochondrial metabolism, including GABA transaminase function in glia.

In the sss mutant fly, there is a stream of connections that leads to its signature loss of sleep: The sss mutant has increased neuron firing caused by downregulation of a potassium channel protein called Shaker. Recently, the Sehgal lab showed that SSS also affects activity of acetylcholine receptors.

Both of these actions may directly cause an inability to sleep. In addition, increased energy demands on glia, which increase GABA transaminase and decrease GABA, may further contribute to sleep loss. On the other hand, if GABA is increased, then sleep is increased, as in flies that lack GABA transaminase.

###

Coauthors are Wen-Feng Chen, Sarah Maguire, Mallory Sowcik, Wenyu Luo, all from Penn and Kyunghee Koh from Thomas Jefferson University. The study was funded by HHMI.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 17 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $392 million awarded in the 2013 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2013, Penn Medicine provided $814 million to benefit our community.

Karen Kreeger | EurekAlert!

Further reports about: Epilepsy GABA Medicine activity decrease disorders findings sleep

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>