Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit flies farm their own probiotics

01.08.2018

The role of bacteria inhabiting our bodies is increasingly recognized as part of our wellbeing. It is in our intestines that the most diverse and significant bacteria community is located. It is believed that the manipulation of this community - named microbiota - can contribute to solve some diseases. However, to enable it, it is necessary to understand which are the bacteria and how they colonize the intestine. Research on this field has been using model organisms, namely mouse and fruit fly, which also benefit from this association with bacteria.

Now, a study published in the PLoS Biology offers a new tool to study this bacteria-host interaction. A research team from the Gulbenkian Institute of Science (IGC) revealed how the bacterial community colonizes the fruit flies kept in the lab or in the wild, and which may be the impact of this colonization in nature. Understanding these mechanisms of colonization may allow microbiota manipulation in insects responsible for agriculture pests or diseases vectors.


This is a microscopic image of beneficial bacteria associated with fruit flies' anterior gut. The nuclei of fly's cells are stained in blue and bacteria are stained in red.

Credit: Inês Pais and Rita Valente

Usage Restrictions: This image can only be used to illustrate this news item.

It was assumed, until recently, that the fruit fly (scientific name, Drosophila melanogaster) did not have a stable bacterial community in its intestine. Gut bacteria would need to be continuously ingested with food. A research team led by Ines Pais, researcher at Luis Teixeira's lab from IGC, showed now that fruit flies have a bacterial community much more stable than it was believed.

But there are differences between flies kept in the laboratory and from the wild. Laboratory flies - globally used in research studies - are associated with bacteria not able to colonize the intestine. Instead, these bacteria grow in the flies' food and are constantly ingested by them. The IGC team discovered a very different situation related to wild flies, which exist in nature.

They showed that bacteria associated to wild flies have a much higher colonization capability. Curiously, these wild flies' bacteria are able to colonize the intestines of flies kept in the lab. By focusing in one of these bacteria, the researchers showed that a stable and continuously colonization of the intestine causes a constant transfer of bacteria to the environment, benefiting the following generation.

"The fruit fly practices a kind of farming by transporting with them the bacteria that are sown in the local where the next generation will grow and feed. Doing so, the next generation of flies will obtain all the benefits related to these bacteria for their development and fertility", explains Ines Pais. "This interaction is also similar to what happens when human beings use yeast to bake bread, or bacteria to make yogurt", adds Luis Teixeira, principal investigator of the research group.

On why fruit flies were used to study the way that bacteria colonize the intestine, Luís Teixeira says: "The bacterial community in fruit flies is much smaller and simple than in mammals. Also, it is a relatively easy to produce fruit flies without any bacteria, which facilitates the study of colonization. Since similar biological mechanisms exist between the fruit fly and humans, we think that there are many lessons that we can learn with the fly". The researcher alerts also for the fact that many insects have a devastating role in agriculture or as diseases vectors. "Through the manipulation of their microbiota it might be possible to control these insects or their capability to transmit diseases, as for example Dengue virus and malaria parasites", says Luís Teixeira.

This study was conducted at the Gulbenkian Institute of Science and funded by Fundação para a Ciência e Tecnologia, University of Gdansk and European Union, and FEDER.

The bacteria in our body

We all live in permanent contact with a huge community of microorganisms, such as bacteria, virus, and fungus. We have different communities on our body's surface and mucous. The biggest and most diverse bacteria community in terms of bacteria species is placed in the intestine. In normal conditions, the microbiota is in balance, providing benefits to the host organism. Our bacteria promote the correct development of our body, the break down of nutrients and protect our body against some pathogens, which can, for example, cause intestine infections. However, when this balance is disturbed (for example, by using antibiotics), the microbiota species may change. The organism passes through a dysbiosis condition, in which this community, instead of beneficial, may become harmful to our health.

###

* Pais, I.S., Valente, R.S., Sporniak, M., Teixeira, L. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biol. 2018 Jul 5;16(7):e2005710. https://doi.org/10.1371/journal.pbio.2005710

Ana Mena | EurekAlert!
Further information:
http://www.igc.gulbenkian.pt/pages/article.php/A=428___collection=pressReleases___year=2018
http://dx.doi.org/10.1371/journal.pbio.2005710

Further reports about: Drosophila Drosophila melanogaster flies fly fruit flies fruit fly insects intestine microbiota

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>