Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit bat's echolocation may work like sophisticated surveillance sonar

08.02.2018

New research from the University of Washington suggests that the Egyptian fruit bat is using similar techniques to those preferred by modern-day military and civil surveillance. The results could inspire new directions for driverless cars and drones.

The new open-access paper in PLoS Biology shows how the animals are able to navigate using a different system from other bats.


The Egyptian fruit bat's tongue clicks points in a different direction for higher frequencies, rather than showing the expected bullseye pattern.

Credit: Wu-Jung Lee/University of Washington

"Before people thought that this bat was not really good at echolocation, and just made these simple clicks," said lead author Wu-Jung Lee, a researcher at the UW's Applied Physics Laboratory. "But this bat species is actually very special -- it may be using a similar technique that engineers have perfected for sensing remotely."

While most other bats emit high-pitched squeals, the fruit bat simply clicks its tongue and produces signals that are more like dolphin clicks than other bats' calls. Fruit bats can also see quite well, and the animals switch and combine sensory modes between bright and dark environments.

... more about:
»Egyptian »bats »frequencies »fruit bat »sonar »sound waves »waves

An earlier study showed that Egyptian fruit bats send clicks in different directions without moving their head or mouth, and suggested that the animals can perform echolocation, the form of navigation that uses sound, better than previously suspected.

"But no one knew how they do it, and that's when I got excited, because there's something going on that we don't understand," Lee said.

Lee and colleagues measured the animals in the "bat lab" at Johns Hopkins University by capturing high-speed video and ultrasonic audio of bats during flight to study the mechanism of their behavior and navigation.

In measuring echolocation signals from fruit bats with a three-dimensional array of microphones, Lee did not solve the mystery of the seemingly motionless tongue clicks, but she did notice something strange. The beam of different frequencies of sound waves emitted by the bats do not align at the center and form a bullseye, as one would expect from a simple sound source, but instead the beam of sound is off-center at higher frequencies.

Lee recognized the pattern as a common one in radar and sonar surveillance systems. Invented in the early 20th century and now used throughout civil and military applications, airplanes, ships and submarines emit pulses of radio waves in the air, or sound underwater, and then analyze the returning waves to detect objects or hazards. While a simple single-frequency sonar has a tradeoff between the angular coverage and image sharpness, a "frequency-scanning sonar" solves this problem by pointing different frequencies of sound at slightly different angles to get fine-grained acoustic images over a large area.

Lee wondered if the fruit bats could be using the same technique when echolocating. She created a computer model of what might happen when the tongue click from the front of the mouth travels out and passes between the bat's lips. The elongated shape of the bat's mouth creates varying distances between the sound source and the gaps between its teeth, and this creates positive or negative interference between sound waves of different frequencies. The result, Lee's model shows, is that different frequencies point in different directions -- just as a frequency-scanning sonar would act.

"For me, what's exciting is the idea that you almost have a convergence between a system that was evolved, and the effects are very similar to what we have invented as humans," Lee said. "This is not the classic case where we learn from nature -- we found out that the bat may be doing the same thing as a system we invented many years ago."

(Sound doesn't have to pass between the bat's teeth, just through its lips, as the researchers discovered from one toothless bat.)

After doing calculations with a rough approximation of the bat's skull shape, Lee worked with co-author Jessica Arbour in the UW Department of Biology to get a CT scan of an actual fruit bat's skull. Incorporating an anatomically correct skull shape in the model confirmed the results. Though Lee can't say exactly what's happening inside the bat's mouth when a tongue click is produced, she believes her model suggests that could be how the bat creates its sonar beams.

This mechanism might be a simple evolutionary solution -- the Egyptian fruit bat looks like closely related bat species that don't echolocate, and also has large eyes. This means the shape of its head has not changed through evolution. From an engineering point of view this simplicity offers a similar benefit.

"You don't have to do anything, you just have to get the distance right. It's by design," Lee said. "This may be a way to produce a very cheap sensor that has this kind of sensing capability."

###

Other co-authors are Benjamin Falk, Chen Chiu and Cynthia Moss at Johns Hopkins University and Anand Krishnan at the Indian Institute of Science Education and Research, Pune. The research was funded by a UW-APL SEED postdoctoral fellowship, an Acoustical Society of America postdoctoral fellowship, the U.S. National Science Foundation, the U.S. Office of Naval Research, the U.S. Air Force Office of Scientific Research, the France-based Human Frontier Science Program, and the Government of India.

For more information, contact Lee at wjlee@apl.washington.edu or 206-685-3904.

Hannah Hickey | EurekAlert!

Further reports about: Egyptian bats frequencies fruit bat sonar sound waves waves

More articles from Life Sciences:

nachricht DNA is held together by hydrophobic forces
23.09.2019 | Chalmers University of Technology

nachricht New method for the measurement of nano-structured light fields
23.09.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Clarification of a new synthesis mechanism of semiconductor atomic sheet

23.09.2019 | Materials Sciences

SUTD researchers revolutionize 3D printed products with data-driven design method

23.09.2019 | Information Technology

Bioplastics from Waste Fats

23.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>