Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Stench to Resource

03.04.2014

Production of sulfur and hydrogen: splitting hydrogen sulfide with solar energy

No one who has cracked open a rotten egg will forget its infernal stench. Biofuel plants, sewage treatment plants, and petroleum refineries can generate substantial amounts of foul-smelling hydrogen sulfide gas, which is highly toxic at higher concentrations.

In the journal Angewandte Chemie, a team of Australian and Chinese researchers has now introduced an innovative photoelectrochemical process in which solar energy is used to split this undesirable by-product into sulfur and hydrogen, converting it to a source of raw materials.

A variety of techniques have been used to remove hydrogen sulfide (H2S) from polluted exhaust gases and occasionally put it to further use. While sulfur can be extracted in some processes, the hydrogen cannot. This is unfortunate because hydrogen is actually an important energy source for future fuel-cell technology.

... more about:
»Hydrogen »electrons »protons »redox »sulfide »sulfur »sunlight

Unfortunately, it isn’t possible to split H2S to gain hydrogen and sulfur simultaneously. Approaches using photochemical splitting seem particularly attractive because solar energy could be used to meet the high energy demand of this reaction.

However, no ecologically and economically feasible process has been found to date. This could now change thanks to a new approach developed by a team headed by Lianzhou Wang (University of Queensland, Australia) and Can Li (Chinese Academy of Sciences and Dalian Laboratory for Clean Energy, China).

Their success lies in a photochemical–chemical loop whose reactions are coupled through a redox pair. A redox pair is a combination of the reduced and oxidized form of the same element that can easily be interconverted. For their process, the researchers used either divalent and trivalent iron ions (Fe2+/Fe3+) or the iodide/triiodide (I/I3) system.

The hydrogen sulfide gas is introduced into the electrolyte of the anodic compartment of an electrochemical cell. Here, a chemical reaction causes it to be bound to the oxidized form of the redox pair (which is thus reduced) and converted to sulfur, which precipitates out as a yellow solid, and hydrogen cations (protons).

The protons can pass through the semipermeable membrane that separates the anodic and cathodic compartments. The second reaction is photoelectrochemical: as protons are reduced at the cathode by taking up electrons, the reduced form of the redox pair is returned to its oxidized state by giving up electrons at the anode. The driving force for this is sunlight, which generates “electron–hole pairs” at the photoanode. These holes can then be filled by the absorbed electrons.

The redox pairs continuously cycle between the oxidized and reduced forms so that the overall reaction is the splitting of hydrogen sulfide into sulfur and hydrogen by sunlight.

About the Author

Dr. Lianzhou Wang is a Professor at the School of Chemical Engineering and Research Director of Nanomaterials Centre, the University of Queensland (UQ), Australia. His main research interests include the design and development of semiconducting nanomaterials for applications in renewable energy conversion/storage systems, including photocatalysis, new-generation solar cells, and rechargeable batteries.

Author: Lianzhou Wang, University of Queensland (Australia), http://www.nanomac.uq.edu.au/lianzhou-wang

Title: An Integrated Photoelectrochemical–Chemical Loop for Solar-Driven Overall Splitting of Hydrogen Sulfide

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201400571

Lianzhou Wang | Angewandte Chemie International Edition

Further reports about: Hydrogen electrons protons redox sulfide sulfur sunlight

More articles from Life Sciences:

nachricht How our cellular antennas are formed
22.01.2019 | Université de Genève

nachricht Bifacial Stem Cells Produce Wood and Bast
22.01.2019 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

How our cellular antennas are formed

22.01.2019 | Life Sciences

Proposed engineering method could help make buildings and bridges safer

22.01.2019 | Architecture and Construction

Bifacial Stem Cells Produce Wood and Bast

22.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>