Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Sci Fi to reality: Unlocking the secret to growing new limbs

08.08.2016

Scientists at the MDI Biological Laboratory are deciphering the genetic code controlling limb regeneration

Many lower organisms retain the miraculous ability to regenerate form and function of almost any tissue after injury. Humans share many of our genes with these organisms, but our capacity for regeneration is limited. Scientists at the MDI Biological Laboratory in Bar Harbor, Maine, are studying the genetics of these organisms to find out how regenerative mechanisms might be activated in humans.


The axolotl, or Mexican salamander, is one of the three regenerative species described in a new paper that identified common genetic regulators governing limb regeneration in all three species. The findings suggest that these regulators aren't specific to individual species, but have been conserved through evolution, including in humans. The discovery opens the door to being able to manipulate these regulators with drug therapies.

Credit: MDI Biological Laboratory

The ability of animals to regenerate body parts has fascinated scientists since the time of Aristotle. But until the advent of sophisticated tools for genetic and computational analysis, scientists had no way of studying the genetic machinery that enables regeneration. Using such tools, scientists at the MDI Biological Laboratory have identified genetic regulators governing regeneration that are common across species.

In a paper published in the journal PLOS ONE, MDI Biological Laboratory scientists Benjamin L. King, Ph.D., and Voot P. Yin, Ph.D., identified these common genetic regulators in three regenerative species: the zebrafish, a common aquarium fish originally from India; the axolotl, a salamander native to the lakes of Mexico; and the bichir, a ray-finned fish from Africa.

The discovery of genetic mechanisms common to all three of these species, which diverged on the evolutionary tree about 420 million years ago, suggests that these mechanisms aren't specific to individual species, but have been conserved by nature through evolution.

"I remember that day very well -- it was a fantastic feeling," said King of the discovery. "We didn't expect the patterns of genetic expression to be vastly different in the three species, but it was amazing to see that they were consistently the same."

The discovery of the common genetic regulators is expected to serve as a platform to inform new hypotheses about the genetic mechanisms underlying limb regeneration. The discovery also represents a major advance in understanding why many tissues in humans, including limb tissue, regenerate poorly -- and in being able to possibly manipulate those mechanisms with drug therapies.

"Limb regeneration in humans may sound like science fiction, but it's within the realm of possibility," said Yin. "The fact that we've identified a genetic signature for limb regeneration in three different species with three different types of appendages suggests that nature has created a common genetic instruction manual governing regeneration that may be shared by all forms of animal life, including humans."

In particular, the scientists studied the formation of a mass of cells called a blastema that serves as a reservoir for regenerating tissues. The formation of a blastema is the critical first step in the regeneration process. Using sophisticated genetic sequencing technology, King and Yin identified a common set of genes that are controlled by a shared network of genetic regulators known as microRNAs.

"Scientists here are studying an evolutionarily diverse range of animals to gain insight into the genetic mechanisms underlying the repair and regeneration of complex tissues and why these processes are poorly active in humans," said Kevin Strange, Ph.D., the laboratory's president. "The value of our approach is confirmed by this remarkable study, which for the first time reveals a genetic network governing limb regeneration that is common across three evolutionarily distinct animal species."

The study also has implications for wound healing, which, because it also requires the replacement of lost or damaged tissues, involves similar genetic mechanisms. With a greater understanding of these mechanisms, treatments could potentially be developed to speed wound healing, thus reducing pain, decreasing risk of infection and getting patients back on their feet more quickly.

Another potential application is development of more sophisticated prosthetic devices. When a limb is amputated the nerves at the site of amputation can be damaged. The repair and regeneration of these nerves could potentially enable the development of more sophisticated prostheses that could interface with these nerves, allowing for greater control.

While speedier wound-healing and improved prostheses may be on the nearer-term horizon, the ability to regrow limbs is a long way off. How long? "It depends on the pace of discovery, which is heavily dependent on funding," Yin said. He predicted the timeline could be hastened if enough research funding were available. "Unfortunately," he added, "we are in a period of greatly diminished funding for scientific research."

###

The MDI Biological Laboratory, located in Bar Harbor, Maine, is an independent, non-profit biomedical research institution focused on increasing healthy lifespan and increasing our natural ability to repair and regenerate tissues damaged by injury or disease. The institution develops solutions to complex human health problems through research, education and ventures that transform discoveries into cures. For more information, please visit mdibl.org.

Media Contact

Stefanie Matteson
smatteso@mdibl.org
207-288-9880

http://www.mdibl.org 

Stefanie Matteson | EurekAlert!

Further reports about: genetic mechanisms genetic regulators limbs mechanisms nerves regenerate

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>