Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Receptor Structure to New Osteoporosis Drugs

20.11.2018

Researchers at the University of Zurich have determined the three-dimensional structure of a receptor that controls the release of calcium from bones. The receptor is now one of the main candidates for developing new drugs to treat osteoporosis. Knowing the receptor’s blueprint will be instrumental for designing drugs that could even help to rebuild bones.

Osteoporosis affects about 400,000 people in Switzerland, mostly women after menopause. It is often described as a silent disease, because bone loss usually occurs little by little over the years and without any symptoms.


The PTH-1 receptor consists of an extracellular part (purple) and a part that resides in the membrane (green). Parathyroid hormone (orange) activates the receptor.

University of Zurich

The body gradually absorbs calcium from the bones, which become brittle. This process is controlled via what is called the parathyroid hormone (PTH) and a closely related peptide – a protein fragment.

They bind to the PTH-1 receptor, thereby telling the body to either release calcium from the bone or to build new bone.

An extremely difficult undertaking

A team led by Andreas Plückthun, professor at the Department of Biochemistry of the University of Zurich (UZH), has now been able to determine the three-dimensional structure of the PTH-1 receptor.

The atomic structure can now serve as the blueprint for the future development of drugs. Such receptor-binding compounds may slow down, and perhaps even reverse, osteoporosis to some degree.

Determining the structure of this receptor was an extremely tough undertaking, as cells only produce a very small amount of it, and it is also very unstable.

“The directed evolution and protein engineering methods we have developed over the last few years were absolutely instrumental in making this possible,” explains Andreas Plückthun.

Disadvantages of current treatment

One of the most effective current treatments for severe osteoporosis involves the use of substances that look like the natural hormone and its related peptide.

“However, this treatment is extremely expensive. The substances have to be injected into the thigh or abdomen once a day, and the treatment also has significant side effects,” says Christoph Klenk, co-author of the study.

The scientists are convinced that thanks to the new insights into the mechanisms of the PTH-1 receptor, new drugs can be developed that don’t have any of the previous disadvantages.

“The receptor is like a lock, and the peptides are the keys that turn it,” describes Plückthun. “Having the atomic 3D blueprint on a computer screen gives us an unprecedented level of insight into how the lock actually works.”

Understanding a whole class of receptors

The PTH-1 receptor is a member of the family of G protein-coupled receptors. In particular, these include receptors that bind to other hormones, such as the ones involved in controlling diabetes.

The work by the UZH scientists thus also sheds light on how the whole family of receptors works, as the PTH-1 receptor was examined at the highest level of detail for any of these receptors so far.

This has enabled the scientists to describe similarities as well as differences to other class B receptors. “Having the blueprint of the lock doesn’t give us a key yet, but now it’s possible to build one,” says Andreas Plückthun.

Wissenschaftliche Ansprechpartner:

Prof. Andreas Plückthun, PhD
Department of Biochemistry
University of Zurich
Phone: +41 44 635 55 70
E-mail: plueckthun@bioc.uzh.ch

Originalpublikation:

Janosch Ehrenmann, Jendrik Schöppe, Christoph Klenk, Mathieu Rappas, Lutz Kummer, Andrew S. Doré, Andreas Plückthun. High-resolution crystal structure of parathyroid hormone 1 receptor in complex with a peptide agonist. Nature Structural and Molecular Biology, November 19, 2018. DOI: 10.1038/s41594-018-0151-4

Weitere Informationen:

https://www.media.uzh.ch/en/Press-Releases/2018/Osteoporosis.html

Kurt Bodenmüller | Universität Zürich
Further information:
http://www.uzh.ch/

More articles from Life Sciences:

nachricht Straight to the heart
24.06.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Fungus produces highly effective surfactant
21.06.2019 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Non-invasive view into the heart

24.06.2019 | Medical Engineering

Fingerprint spectroscopy within a millisecond

24.06.2019 | Trade Fair News

Straight to the heart

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>