Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From leaf to root - messenger RNAs are long-distance travellers

24.03.2015

Using bioinformatic data analyses an international team of scientists could discover thousands of mobile messenger RNAs.

Plants take up water and salts from the soil and they produce sugars via photosynthesis. These nutrients need to be transported to growing tissues adjacent to their uptake or synthesis. This task is assumed by the vascular bundles, which consist of two tissues: xylem and phloem. Water and dissolved salts are transported from root to shoot by the xylem.


Heterografts of the Arabidopsis ecotypes Columbia and Pedriza were used to analyze mobile mRNAs. White arrows indicate grafting sites.

© Max Planck Institute of Molecular Plant Physiology

The phloem facilitates transport sugars and other organic compounds from nutrient exporting tissues (sources) to importing tissues (sinks). Besides small molecules, proteins and siRNAs (small interfering RNAs) are transported in the phloem as well.

“Small interfering RNAs take part in gene regulation. They are able to migrate long distances, e.g. from leaves to flowers where they can regulate the production of pollen or phosphate uptake in the root”, explains Friedrich Kragler of the Max Planck Institute of Molecular Plant Physiology in Potsdam. Moreover there were hints on phloem transport of larger RNA molecules like messenger RNAs (mRNAs). They convey genetic information from DNA to protein synthesis.

“Only a small number of mRNAs that were found in the phloem have been analyzed further. In addition it was unknown to what extent mRNAs are transported between distant tissues”, says Friedrich Kragler. On this account the international team of scientists investigated the mobility of mRNAs in the model plant Arabidopsis thaliana (thale cress). First they needed to develop a method which enables distinction of mobile and immobile mRNAs. Migration of mRNA from shoot to root and vice versa could be analyzed in heterografted plants.

“Due to their genetic variety, we chose to use different Arabidopsis ecotypes for our grafting experiments”, says Wolf-Rüdiger Scheible of the Samuel Robert Noble Foundation in Ardmore, Oklahoma. Ecotypes are genetically distinct populations within one species that are adapted to different ecosystems. The scientists decided to use two out of over 750 Arabidopsis subspecies: Columbia (Col-0) from Missouri and Pedriza (Ped-0) from Spain. They harbor substantially diverged genetic information. So, mRNAs can be easily assigned to one of those ecotypes.

Seedlings were used for root-shoot heterografting in various combinations. Two weeks after grafting, DNA and RNA of leaves and roots were isolated und subjected to sequencing. “By analyzing the obtained sequence data we could identify 2006 genes that produce mobile mRNAs”, explains Friedrich Kragler, “although the true number actually might be even higher as our approach could not interrogate all mRNAs that are produced in these Arabidopsis ecotypes” adds Wolf-Rüdiger Scheible.

The majority of detected mobile mRNAs migrates in the phloem, matching the sugar transport. The other half splits in molecules that migrate from root to shoot (25%) and those that are transported in both directions (24%). The scientist assume that plants use mobile mRNAs as signal molecules to coordinate growth processes as well as adaptation to environmental stresses in distant tissues.

Grafting is commonly used in viticulture and fruit cultivation to combine characteristic traits of two varieties. Nevertheless, the underlying genetic determinants are often unknown. “Knowing the identity of mobile mRNAs that move from roots into flowers will help us to understand why certain graft combinations e.g. used widely by plant breeders with grapevines, tomatoes, or with apple trees are beneficial or detrimental for fruit production”, says Friedrich Kragler.

KD

Contact

Dr. Friedrich Kragler
Max Planck Institute for Molecular Plant Physiology
Phone: +49 331 567-8120
kragler@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de/6650/3kragler

Dr. Kathleen Dahncke
Press and public relations
Max Planck Institute for Molecular Plant Physiology
Phone: +49 331 567-8275
dahncke@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Original publication:
Christoph J. Thieme, Monica Rojas-Triana, Ewelina Stecyk, Christian Schudoma, Wenna Zhang, Lei Yang, Miguel Miñambres, Dirk Walther, Waltraud X. Schulze, Javier Paz-Ares, Wolf-Rüdiger Scheible and Friedrich Kragler
Endogenous Arabidopsis messenger RNAs transported to distant tissues
Nature Plants, 23 March 2015, DOI: 10.1038/nplants.2015.25

Weitere Informationen:

http://www.mpimp-golm.mpg.de/6650/3kragler Link to Friedrich Kraglers group

Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>