Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From a plant sugar to toxic hydrogen sulfide

19.12.2018

In a doctoral research project conducted at the Department of Biology, the degradation of the dietary sugar sulfoquinovose by anaerobic bacteria to toxic hydrogen sulfide was described for the first time – increased production of hydrogen sulfide in the human intestinal system has been associated with inflammatory bowel disease and colon cancer.

Sulfoquinovose is a sugar found in plants, which contains sulfur. As a constituent of green-vegetable diets, for example in spinach and salad, it is also found in the human intestinal system – an environment without oxygen – and therefore doctoral researcher Anna Burrichter wanted to answer the following question: What happens when anaerobic bacteria degrade sulfoquinovose in the absence of oxygen?


The picture shows the degradation of sulfoquinovose (SQ) by Escherichia coli to a sulfur-containing intermediate (DHPS), which is excreted. Another bacterium, Desulfovibrio, utilizes this intermediate for anaerobic respiration and produces toxic hydrogen sulfide (H2S).

Copyright: Daniel Schleheck / Frontiers Microbiology 2018


Anna Burrichter, Dr. Daniel Schleheck.

Photo: University of Konstanz

She discovered a new type of metabolism that transforms sulfoquinovose into hydrogen sulfide (H2S). So far, these results have been obtained from a laboratory model system. In future studies, the researchers will have to examine whether sulfoquinovose in the intestine is indeed metabolized to hydrogen sulfide, which is a toxic compound for humans.

The study was conducted by the research team of Dr David Schleheck, and the results have been published in the current issue of the journal “Frontiers in Microbiology”.

Anna Burrichter succeeded in discovering an entirely novel bacterial degradation pathway that involves three individual discoveries: the discovery of a new link in the biological sulfur cycle, the discovery of a new type of fermentation in Escherichia coli, the best-studied model organism that was also used in this study, and the discovery of a so far unknown energy metabolism in sufite-respiring bacteria, in the Desulfovibrio species.

“Without oxygen, the degradation pathways are completely different. In the context of sulfoquinovose, we discovered a novel type of fermentation in Escherichia coli,” says Anna Burrichter. Along with the sulfur-containing degradation product that is formed in this first degradation step, dihydroxypropane sulfonate, the researchers found a second bacterium, Desulfovibrio, which can utilize this intermediate for anaerobic respiration, the so-called sulfite reduction.

This type of respiration with the organically-bound sulfur as electron acceptor instead of oxygen is described in detail for the first time in Anna Burrichter’s thesis. “We thought that hydrogen sulfide may be the end product, but it had never been proven before, and no one knew which bacteria and enzymes may catalyse these reactions”, the biologist says.

The next step now is to transfer the results of the laboratory model to the human intestine. “We want to investigate if these degradation pathways can also be found in the intestine and how much they contribute to the overall production of hydrogen sulfide, depending on the diet”, says David Schleheck, whose research team has been supported by the Heisenberg Programme of the German Research Foundation (DFG).

Previously it was assumed that organosulfonate substrates, such as taurine, are transformed into hydrogen sulfide mainly from meat-rich and high-fat diets. The new findings now suggest that organosulfonates from vegetarian food, that is sulfoquinovose, can be degraded to hydrogen sulfide as well.

Anna Burrichter’s doctoral thesis is a promising basis for further research in this area. “Now we know the individual steps of the degradation pathway and the enzymes and genes involved, and therefore, now we know what we have to search for”, concludes Anna Burrichter. The production of hydrogen sulfide in general can contribute to inflammatory bowel disease and colon cancer. However, it is also assumed that hydrogen sulfide, at least at low concentrations in the intestine, could as well have beneficial effects for our health.

David Schleheck: “To better understand the human microbiome and the effects of hydrogen sulfide, it is essential to know all the pathways that can lead to hydrogen sulfide production. Only then one might be able to better manage the production of hydrogen sulfide in the intestine”.

To conduct this study, the research team Microbial Ecolocy collaborated with the teams of Dr Thomas Huhn (Department of Chemistry), Professor Dieter Spiteller (Department of Biology) and Dr Paolo Franchini (Genomics Center).

Key facts:
• Original publication: Anna Burrichter, Karin Denger, Paolo Franchini, Thomas Huhn, Nicolai Müller, Dieter Spiteller and David Schleheck, Anaerobic Degradation of the Plant Sugar Sulfoquinovose Concomitant With H2S Production: Escherichia coli K-12 and Desulfovibrio sp. Strain DF1 as Co-culture Model. Frontiers in Microbiology, November 2018, Volume 9.
https://www.frontiersin.org/articles/10.3389/fmicb.2018.02792/full
• The bacterial degradation of the plant sugar sulfoquinovose to hydrogen sulfide is described for the first time.
• Study was conducted in the context of biologist Anna Burrichter’s doctoral thesis.
• Collaboration of researchers from the Departments of Biology and Chemistry and the Konstanz Research School Chemical Biology (KoRS-CB).
• Funded by the Heisenberg Programme of the German Research Foundation (DFG), the Konstanz Research School Chemical Biology (KoRS-CB) and the Konstanz Young Scholar Fund (YSF).

Note to editors:
You can download photos here:

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2018/Bilder/Von_pflanzlicher...
Caption:
The picture shows the degradation of sulfoquinovose (SQ) by Escherichia coli to a sulfur-containing intermediate (DHPS), which is excreted. Another bacterium, Desulfovibrio, utilizes this intermediate for anaerobic respiration and produces toxic hydrogen sulfide (H2S).
Copyright: Daniel Schleheck / Frontiers Microbiology 2018

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2018/Bilder/Von_pflanzlicher...
Caption:
Anna Burrichter, Dr. Daniel Schleheck.
Photo: University of Konstanz

Contact
University of Konstanz
Communications and Marketing
Phone: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

- uni.kn

Originalpublikation:

Anna Burrichter, Karin Denger, Paolo Franchini, Thomas Huhn, Nicolai Müller, Dieter Spiteller and David Schleheck, Anaerobic Degradation of the Plant Sugar Sulfoquinovose Concomitant With H2S Production: Escherichia coli K-12 and Desulfovibrio sp. Strain DF1 as Co-culture Model. Frontiers in Microbiology, November 2018, Volume 9.
https://www.frontiersin.org/articles/10.3389/fmicb.2018.02792/full

Julia Wandt | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-konstanz.de

Further reports about: Biology DFG Desulfovibrio anaerobic enzymes respiration sulfide sulfur

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>