Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Friendly gut bacteria lend a hand to fight infection

21.08.2009
Immunology researchers at UT Southwestern Medical Center have found that bacteria present in the human gut help initiate the body's defense mechanisms against Toxoplasma gondii, the parasite responsible for toxoplasmosis.

Toxoplasmosis is generally a mild infection, but it can have serious and potentially fatal effects in pregnant women, their fetuses and others with weakened immune systems.

In mice, T gondii directly activates a specific immune protein in the host, called toll-like receptor 11 (TLR-11), which helps control the animals' immune response to the parasite. Humans, however, don't have an active form of this receptor. Exactly how the body senses T gondii has remained unclear because the parasite doesn't activate any of the functioning toll-like receptors that humans do possess.

In a new study appearing online and in the Aug. 20 issue of Cell Host & Microbe, researchers at UT Southwestern suggest that instead of activating toll-like receptors directly, T gondii's first interaction in the human gut is with the helpful bacteria that live inside us. Those bacteria then release signaling molecules, alerting the human host to the invader.

"While this is very early data, our results suggest that looking at the bacteria present in each patient's gut could help physicians understand their susceptibility to infectious diseases," said Dr. Felix Yarovinsky, assistant professor of immunology at UT Southwestern and senior author of the paper. "It also suggests the possibility of developing novel probiotic strategies for treating parasitic infections such as toxoplasmosis and cryptosporidiosis, a related disease caused by the parasite Cryptosporidium."

T gondii affects more than 1 billion people worldwide. The protozoan parasite can infect most warm-blooded animals, but the primary host is the house cat. Animals are generally infected with T gondii by ingesting contaminated meat, water or the feces of a cat that has recently been infected; however, the parasite also can be passed from mother to fetus.

Because toxoplasmosis is passed to humans through contaminated cat feces, pregnant women are encouraged to keep all house cats indoors and recruit someone who is not pregnant to clean the litter box daily. Once a person is infected, the parasite penetrates the intestine and spreads throughout all organs.

The researchers studied mice in which TLR-11 had been genetically eliminated. This mimics the human immune response to T gondii. They then infected the TRL-11-deficient mice with T gondii both orally and systemically by injection.

Even though the mice lacked their normal mechanism for fighting infection, they nonetheless mounted an attack against T gondii. The researchers found that the commensal – or good – bacteria in the gut activated their immune system, thereby inducing various inflammatory responses against the invading pathogen. In humans, he said, it is those helpful bacteria that send activating signals to the three toll-like receptors that are functional, inducing various inflammatory responses against invading pathogens like T gondii.

"This seems to be the first example of indirect pathogen recognition in vivo where activation of the immune system depends on indirect rather than direct sensing of a pathogen," Dr. Yarovinsky said.

The problem, Dr. Yarovinsky said, is that TLR-11 appears to cause more harm than good. Though the mice lacking the receptor – but with commensal bacteria – were able to mount enough signaling proteins to defeat the parasite, those with the receptor activated too many signaling proteins and developed severe inflammation in their small intestines. When infected with higher doses of T gondii, the mice with TLR-11 also died in much greater numbers because of the increased inflammatory response.

"We speculate that because commensal bacteria co-evolved with the host, they must have found this fine balance to induce the sufficient stimulatory effects of the immune system without causing illness or death," Dr. Yarovinsky said. "The fact that commensal bacteria vary dramatically from person to person might explain why therapeutic outcomes vary so much."

The next step, Dr. Yarovinsky said, is to determine whether particular species of commensal bacteria are more beneficial than others.

Other UT Southwestern researchers involved in the study were Alicia Benson, lead author and research assistant in immunology; Reed Pifer, research assistant in immunology; Cassie Behrendt, research technician for the Howard Hughes Medical Institute; and Dr. Lora Hooper, assistant professor of immunology and microbiology and an investigator for the Howard Hughes Medical Institute at UT Southwestern.

The work was supported by the National Institute of Allergy and Infectious Diseases and the Howard Hughes Medical Institute.

Visit www.utsouthwestern.org/digestive to learn more about UT Southwestern's clinical services for digestive disorders.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Dr. Felix Yarovinsky -- http://www.utsouthwestern.edu/findfac/professional/0,2356,96670,00.html

Kristen Holland Shear | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>