Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FRET-FLIM optimization shows activity of two signaling molecules in single dendritic spine

01.11.2016

Researchers at Max Planck Florida Institute for Neuroscience and Stanford University teamed up to develop a new molecular tag which allowed visualization of two signaling proteins' activity in a single dendritic spine in real time.

An ongoing challenge for scientists working to understand the brain is being able to see all its parts. Researchers have spent centuries developing better imaging techniques to see beyond the abilities of our naked eyes. They've built microscopes that gather information down to the electron level. They've engineered fluorescent tags that make cells and structures of interest more visible.


These are representative fluorescence lifetime images of RhoA and CaMKII activation in a dendritic segment of a hippocampal neuron. Structural plasticity was induced in a single spine using 2p glutamate uncaging.

Credit: Max Planck Florida Institute for Neuroscience

One of the most effective imaging techniques for neuroscientists has been the combination of FRET (fluorescence resonance energy transfer) and FLIM (Fluorescence Lifetime Imaging Microscopy). This duo gives scientists the power to view biochemical dynamics of proteins with high spatial and temporal accuracy, while also allowing them to calculate the minuscule distances between molecules in real time.

At the Max Planck Florida Institute for Neuroscience (MPFI), researchers in Ryohei Yasuda's laboratory, such as postdoctoral researcher, Tal Laviv, Ph.D., have been working to understand the cellular and molecular mechanisms of learning and memory.

The team has been using FRET-FLIM to study the activity of proteins in dendritic spines, protrusions that form off of neuronal branches, and make synaptic connections and communicate with other neurons. Dendritic spines are known to emerge, change shape, and even disappear over a lifetime, and these changes are considered the cellular basis for learning and memory. These imaging techniques were a key factor in helping the team elucidate some of the molecular mechanisms behind this type of plasticity.

Nonetheless, there is an important limitation in using these techniques to understand how multiple types of proteins and molecules interact in living samples. There is only one FRET donor tag (GFP) that will work within a FLIM protocol, so if researchers want to study two proteins, they'll investigate "Protein A" in one set of experiments, following an additional set of experiments to examine "Protein B" activity.

Following these experiments, the researchers will need to draw conclusions about how these two proteins interact based on these two sets of experiments. This not only increases the amount of time it takes to study multiple proteins, but also makes it more difficult to analyze how they interact in space and time. "For those types of systems," explained Dr. Laviv, "it's crucial to look at as many proteins as possible at the same time to correlate their activities."

Researchers at Stanford University, from the research team of Dr. Michael Lin, which specializes in building protein based tools for molecular imaging, reached out to the Yasuda Lab at MPFI after they identified a new set of red fluorescent proteins, or RFPs, named CyRFPs. They suggested this new set of RFPs could be used in combination with GFP for simultaneous imaging.

To determine if this could work, the scientists tested the ability to visualize dendritic spine structure and function using CyRFP and a GFP-based calcium bio-sensor. Using this combination, they were able to monitor the structure and function of spines in real time, even in the brains of living animals. Finally, the team tweaked a variant of CyRFP, which now could be used as a fluorescent FRET donor a part of a FRET pair, named monomeric cyan-excitable red fluorescent protein (mCyRFP1). Scientists in the Yasuda Lab conducted a series of experiments to test the newly proposed FRET pair alongside a GFP bionsensor. The technique allowed them to view, for the first time, the activities of two signaling molecules within a single dendritic spine as the spine was undergoing synaptic plasticity. A description of this new technique was published on October 31, 2016 in Nature Methods.

Dr. Laviv explains that the new technique will increase both accuracy and efficiency of FRET-FLIM imaging experiments and could potentially increase our understanding of how learning and memory ultimately alters the structure and function of dendritic spines.

###

This work was supported by grants from Human Frontiers Science Program, NSF Graduate Fellowship, a Siebel Scholar Award, National Institute of Health grants R01MH080047, 1DP1NS096787, 1U01NS090600 and P50GM107615, a Burroughs Wellcome Foundation Career Award for Medical Scientists, a Rita Allen Foundation Scholar Award and the Max Planck Florida Institute for Neuroscience.

About Max Planck Florida Institute for Neuroscience

The Max Planck Florida Institute for Neuroscience (Jupiter, Florida, USA) specializes in the development and application of novel technologies for probing the structure, function, and development of neural circuits. It is the first research institute of the Max Planck Society in the United States.

Jennifer Gutierrez | EurekAlert!

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>