Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fresh insights into the Venus flytrap

08.09.2011
Trap closes, insect dies: the plant known as the Venus flytrap relies on an ingenious mechanism for capturing tiny creatures. Researchers from the University of Würzburg are now providing new insights into how this insect trap works in the magazine PNAS.

In the wild, the Venus flytrap only grows in wetlands deficient in nutrients in the USA. The insects that it captures and digests with its leaves provide it with valuable additional nutrition. If a fly or ant crawls around on the plant’s two-lobed leaves, the plant registers this contact and snaps its leaves shut in a fraction of a second, trapping its prey. In a kind of little “green stomach”, gland secretions then cause the fly or ant to be digested. The nutrients released mainly from the proteins in the prey are absorbed by the Venus flytrap so that it can expand its arsenal of traps.



Open Venus flytrap (A): The sensory hairs are clearly visible; their nature is made clear in the sectional enlargement (B) using scanning electron microscopy. If potential prey touches a hair, the hair’s cells are squeezed so that it bends. This creates an electrical signal that travels over the surface of the trap. If a second signal follows shortly after, the trap snaps shut. From its rosette-like gland complexes (visible in B) the plant then secretes digestive enzymes. There are 60 glands for every square millimeter, so around 37,000 per trap.
Images: Christian Wiese (A), Benjamin Hedrich (B)


Electrical, chemical, and mechanical signals

“Ever since the days of Charles Darwin, biologists have been trying to find out how sensors and biomechanics function in the Venus flytrap", says Professor Rainer Hedrich. This biophysicist and his team from the University of Würzburg have now made new discoveries. In the US journal PNAS (Proceedings of the National Academy of Sciences) they describe how the Venus flytrap couples electrical, chemical, and mechanical signals in order to capture and digest insects.

The Würzburg scientists were assisted in their work by Nobel Prize winner Erwin Neher from Göttingen, an expert in secretion processes in animal cells, and by plant hormone specialist Bettina Hauser from Halle.

“Touch” hormone stimulates digestion

Once an insect is caught in the trap, it tries desperately to escape. But these mechanical stimuli activate the trap more and more: it produces the touch hormone OPDA, which in turn triggers the glands in the trap to secrete digestive enzymes. This can be demonstrated using an experiment: if a compound resembling OPDA is administered to the traps, they shut and form a stomach in which the glands become active – without any contact stimuli from prey whatsoever.

Stimulation puts other traps on high alert

The researchers have made another finding: if a trap is stimulated by the OPDA hormone, it forwards this chemical signal to the other traps, putting them on higher alert of a catch. This makes perfect sense as insects rarely arrive on their own: where one ant appears, there are likely to be others following closely behind.

Stimulated traps also respond with a series of action potentials, i.e. a temporary change in the electrical conductivity of their cell membranes. “From action potential to action potential, the trap closes ever more tightly. By struggling to survive, the victims keep on making their situation worse", says Hedrich.

Going without food during times of drought

The secretion of digestive fluid also means a loss of water for the Venus flytrap. So, how does it react during times of drought? What happens is that the water stress hormone abscisic acid makes the plant less sensitive to touch and suppresses the production of watery secretion, as the scientists have established. In the event of a shortage of water, the flytrap goes without food – it starves itself so it does not die of thirst.

Deciphering the genetic make-up of the Venus flytrap

Hedrich’s conclusions: “The closing of the traps and the secretion of digestive liquid appear to be controlled via different signal paths. The task is to nail the genes responsible. That is why we are now working on deciphering the genetic make-up of the Venus flytrap.” The scientists also want to discover how this carnivorous plant puts together a fluid that will digest its prey.

Millions from the European Research Council

Hedrich is pressing ahead with his research into the Venus flytrap and other carnivorous plants thanks to top-level funding. The European Research Council has given him a grant of EUR 2.5 million for his work. Hedrich’s team consists of ten bioinformaticians, molecular biologists, chemists, and biophysicists. The researchers are planning to analyze the genetic material of the main types of trap as well as the genes that are only active in the traps. By comparing different plant species, they want to find clues as to the evolution of this special diet.

María Escalante-Pérez, Elzbieta Krol, Annette Stange, Dietmar Geiger, Khaled A. S. Al-Rasheid, Bettina Hause, Erwin Neher, and Rainer Hedrich: „A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap”, PNAS 2011, published online on 06-11-2011, doi:10.1073/pnas.1112535108

Contact

Prof. Dr. Rainer Hedrich, T +49 (0)931 31-86100,
hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de
http://www.pnas.org/content/early/2011/08/29/1112535108.full.pdf+html?sid=e066daaa-7d91-4817-a04c-a27b4c9645a6

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>