Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Formula discovered for longer plant life

23.09.2008
Molecular biologists from Tuebingen have discovered how the growth of leaves and the aging process of plants are coordinated

Plants that grow more slowly stay fresh longer. Scientists at the Max Planck Institute for Developmental Biology in Tuebingen have shown that certain small sections of genes, so-called microRNAs, coordinate growth and aging processes in plants.


Thale cress Arabidopsis thaliana
Photo: Juergen Berger/ Max Planck Institute for Developmental Biology

These microRNAs inhibit certain regulators, known as TCP transcription factors. These transcription factors in turn influence the production of jasmonic acid, a plant hormone. The higher the number of microRNAs present, the lower the number of transcription factors that are active, and the smaller the amount of jasmonic acid, which is produced by the plant. The plant therefore ages more slowly, as this hormone is important for the plant's aging processes. Since the quantity of microRNAs in the plants can be controlled by genetic methods, it may be possible in future to cultivate plants that live longer and grow faster. (PLoS Biology, September 22, 2008)

MicroRNAs are short, single-strand sections of genes that regulate other genes. They do this by binding to complementary sections of the genetic material, thus preventing them from being read and implemented in genetic products. In plants, microRNAs mainly inhibit other regulators, so-called transcription factors. These factors can switch genes on or off by binding to DNA sections, thus activating or blocking them so that either too many or too few proteins are formed. Since proteins control metabolic processes, an imbalance leads to more or less clearly visible changes to the plant.

The scientists in Detlef Weigel's department at the Max Planck Institute for Developmental Biology have investigated the effects that the transcription factors of the TCP family have on the growth and aging of the model plant Arabidopsis thaliana. These transcription factors are regulated by the microRNA miR319.

It was already known that miR319-regulated transcription factors affect the growth of leaves. Using a combination of biochemical and genetic analyses, the researchers have now discovered that the transcription factors also regulate those genes that are essential for the formation of the plant hormone jasmonic acid. The higher the quantity of the microRNA miR319 present in the plant, the lower the number of transcription factors that are produced, and hence the smaller the amount of jasmonic acid, which can be synthesized. These plants have longer growth periods and age more slowly than plants that contain less miR319 and therefore have a shorter growth period but die off sooner.

"Our studies show that the transcription factors, which are regulated by the microRNA miR319, exert a negative influence on the growth of plants, and also lead to premature aging," says Detlef Weigel. The mechanism discovered here is a further milestone in the attempt to explain the relationships of genetic regulation in plants. "Only when we have a better understanding of these processes will we be able to produce plants that have particularly desired properties," says biologist Weigel.

Original publication:
Schommer, C., Palatnik, J.F., Aggarwal, P., Chételat, A., Cubas, P., Farmer, E.E., Nath, U., Weigel, D. (2008): Control of Jasmonate Biosynthesis and Senescence by miR319 Targets. PLoS Biology.

Contact:

Prof. Dr. Detlef Weigel
Tel: +49 (0)7071-601-1410
E-mail: Detlef.Weigel@tuebingen.mpg.de
Dr. Susanne Diederich (Press and PR Department)
Tel: +49 (0)7071-601-333
E-mail: presse@tuebingen.mpg.de
The Max Planck Institute for Developmental Biology conducts basic research in the areas of biochemistry, genetics and evolutionary biology. It has some 325 employees and is located at the Max Planck Campus in Tübingen, Germany. The MPI for Developmental Biology is one of 82 Institutes and research labs of the Max Planck Society for the Promotion of Science e.V.

Dr. Susanne Diederich | Max-Planck-Institut
Further information:
http://eb.mpg.de

More articles from Life Sciences:

nachricht Identifying the blind spots of soil biodiversity
04.08.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht AI & single-cell genomics
04.08.2020 | Helmholtz Zentrum München - German Research Center for Environmental Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>