Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Formula discovered for longer plant life

23.09.2008
Molecular biologists from Tuebingen have discovered how the growth of leaves and the aging process of plants are coordinated

Plants that grow more slowly stay fresh longer. Scientists at the Max Planck Institute for Developmental Biology in Tuebingen have shown that certain small sections of genes, so-called microRNAs, coordinate growth and aging processes in plants.


Thale cress Arabidopsis thaliana
Photo: Juergen Berger/ Max Planck Institute for Developmental Biology

These microRNAs inhibit certain regulators, known as TCP transcription factors. These transcription factors in turn influence the production of jasmonic acid, a plant hormone. The higher the number of microRNAs present, the lower the number of transcription factors that are active, and the smaller the amount of jasmonic acid, which is produced by the plant. The plant therefore ages more slowly, as this hormone is important for the plant's aging processes. Since the quantity of microRNAs in the plants can be controlled by genetic methods, it may be possible in future to cultivate plants that live longer and grow faster. (PLoS Biology, September 22, 2008)

MicroRNAs are short, single-strand sections of genes that regulate other genes. They do this by binding to complementary sections of the genetic material, thus preventing them from being read and implemented in genetic products. In plants, microRNAs mainly inhibit other regulators, so-called transcription factors. These factors can switch genes on or off by binding to DNA sections, thus activating or blocking them so that either too many or too few proteins are formed. Since proteins control metabolic processes, an imbalance leads to more or less clearly visible changes to the plant.

The scientists in Detlef Weigel's department at the Max Planck Institute for Developmental Biology have investigated the effects that the transcription factors of the TCP family have on the growth and aging of the model plant Arabidopsis thaliana. These transcription factors are regulated by the microRNA miR319.

It was already known that miR319-regulated transcription factors affect the growth of leaves. Using a combination of biochemical and genetic analyses, the researchers have now discovered that the transcription factors also regulate those genes that are essential for the formation of the plant hormone jasmonic acid. The higher the quantity of the microRNA miR319 present in the plant, the lower the number of transcription factors that are produced, and hence the smaller the amount of jasmonic acid, which can be synthesized. These plants have longer growth periods and age more slowly than plants that contain less miR319 and therefore have a shorter growth period but die off sooner.

"Our studies show that the transcription factors, which are regulated by the microRNA miR319, exert a negative influence on the growth of plants, and also lead to premature aging," says Detlef Weigel. The mechanism discovered here is a further milestone in the attempt to explain the relationships of genetic regulation in plants. "Only when we have a better understanding of these processes will we be able to produce plants that have particularly desired properties," says biologist Weigel.

Original publication:
Schommer, C., Palatnik, J.F., Aggarwal, P., Chételat, A., Cubas, P., Farmer, E.E., Nath, U., Weigel, D. (2008): Control of Jasmonate Biosynthesis and Senescence by miR319 Targets. PLoS Biology.

Contact:

Prof. Dr. Detlef Weigel
Tel: +49 (0)7071-601-1410
E-mail: Detlef.Weigel@tuebingen.mpg.de
Dr. Susanne Diederich (Press and PR Department)
Tel: +49 (0)7071-601-333
E-mail: presse@tuebingen.mpg.de
The Max Planck Institute for Developmental Biology conducts basic research in the areas of biochemistry, genetics and evolutionary biology. It has some 325 employees and is located at the Max Planck Campus in Tübingen, Germany. The MPI for Developmental Biology is one of 82 Institutes and research labs of the Max Planck Society for the Promotion of Science e.V.

Dr. Susanne Diederich | Max-Planck-Institut
Further information:
http://eb.mpg.de

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>