Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Form is function

12.09.2019

Liquid-like tissue behavior is a key principle for the formation of structures in biological systems.

Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam have shown that growing bone tissue behaves like a viscous liquid on long time scales, thereby accepting forms with minimal surface area. This cell behavior determines the shape of the tissue when it grows on a scaffold.


Composition of phase contrast images of a tissue grown on a capillary bridge (left). Skeleton of cells stained with a green fluorescent marker to visualize them in 3D, light-sheet microscopy (right).

MPI of Colloids and Interfaces/ Sebastian Ehrig

A particular strength and fascinating feature of living systems is their adaptability to changing environmental conditions. One such example being human bone which regularly regenerates itself by attaching and removing small bone packages.

This conversion process is regulated by the mechanical environment, allowing bone to adapt its structure and its internal shape to changing loading requirements such as regular exercise. John Dunlop, former group leader at the Max Planck Institute of Colloids and Interfaces in Potsdam, and now Professor of Biophysics at the University of Salzburg was researching with his team the optimum conditions for generating bone tissue.

Biological structures are formed by cells, which are much smaller than the resulting shape. The cells are even able to sense the curvature of a surface that is much larger than themselves. How do the cells manage to create such complex macroscopic forms or restore the original shape during bone healing?

"A partial answer to this question could be the insight of this work. Cells use surface energy for shaping in much the same way that complex structures can arise from soap bubbles due to surface energy," underlines Peter Fratzl, Director at the Max Planck Institute of Colloids and Interfaces and co-author of the study, in which also scientists from the Berlin Charité, from Würzburg, from Dresden and from the Montanuniversität Leoben were involved.

Forms of constant mean curvature

The researchers were able to show that tissue that grew on curved surfaces developed forms with outer boundaries of constant mean curvature. These structures are very similar to forms of liquid droplets that assume a minimal surface area. Curved plastic surfaces functioned as substrates for cell and tissue growth, which Sebastian Ehrig produced during his PhD.

These surfaces were produced using a liquid polymer that solidified at high temperatures. It formed together with the substrate and different geometries on which the cells could grow and form new tissue. The amount of tissue formed depended on the shape of the substrate. The scientists noted that more tissue on strongly concave surfaces developed, indicating a mechanically induced biological feedback mechanism.

By inhibiting cell contractility it was shown that active cell forces are needed to produce sufficient surface tensions for fluid-like behavior and growth of the tissue. "This suggests that mechanical signal transduction between cells and their physical environment, along with the continuous reorganization of cells and matrix, is a key principle in tissue formation," emphasizes Sebastian Ehrig, first author and former PhD student at the MPI of Colloids and Interfaces, who is now researching at the Max-Delbrück Center in Berlin.

Chiral Structures

Furthermore light sheet microscopy provided insights into the spatial structure of the tissue, with another notable discovery: the cells clustered into extensive chiral structures that spiral around the capillary bridges. You find similar structures in osteons, the smallest functional unit of the bone. An osteon arises when bone-forming cells (osteoblasts) are concentrically stored in 4-20 layers around a blood vessel, become walled and become lamellar bones.

The study suggests that liquid-like tissue behavior is a key principle for the formation of structures in biological systems. This could have far-reaching importance in terms of understanding healing processes and organ development but also for medical applications such as the development of implants.

Originalpublikation:

S. Ehrig, B. Schamberger, C. M. Bidan, A. West, C. Jacobi, K. Lam, P. Kollmannsberger, A. Petersen, P. Tomancak, K. Kommareddy, F. D. Fischer, P. Fratzl, John W. C. Dunlop
Surface tension determines tissue shape and growth kinetics
Sci. Adv. 2019; 5: eaav9394

Weitere Informationen:

http://www.mpikg.mpg.de/6167246/news_publication_13873017_transferred

Katja Schulze | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>