Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forgotten and lost - when proteins "shut down" our brain

19.02.2009
Max Planck scientists obtained important new insights into the structure and interaction of a protein relevant to Alzheimer’s disease

Which modules of the tau protein, in neurons of Alzheimer disease patients, may act in a destructive manner were investigated by researchers from the Max Planck Institute for Biophysical Chemistry (Göttingen) and the Max Planck Unit for Structural Molecular Biology (Hamburg) with the help of Nuclear Magnetic Resonance Spectroscopy (PLoS Biology, February 17, 2009).


Schematic view of the tau protein structure.
Image: Max Planck Institute for Biophysical Chemistry / Zweckstetter

Coordination becomes difficult, items disappear, keeping new information in the mind is impossible. Worldwide almost 30 million people suffer from Alzheimer’s disease, a neurodegenerative, irreversible ailment which starts with memory gaps and ends in helplessness and the loss of personality. The most critical factor in developing Alzheimer’s disease is age. Most cases occur after the age of 65.

Two hallmarks are typical for Alzheimer affected brains. One of them, located between nerve cells, is amyloid plaques - extracellular protein aggregates mainly composed of a protein named beta-amyloid. The other clue is intracellular tau fibrils. In the interplay with genetic factors, the latter contribute to a disordered communication within the cell. This triggers cell death.

But the tau protein is not only harmful. Quite the contrary is the case. In its normal non-pathogenic form tau binds to microtubules, long tubular cytoskeletal building blocks, which serve as "tracks" for intracellular transport. In patients afflicted by Alzheimer’s disease or similar dementia, tau is abnormally altered. In its pathogenic form tau possesses more phosphorylated amino acids than in its normal healthy counterpart. "Our interest was focussed on how certain phosphorylated residues alter the structure of tau in a way that it can not bind to microtubules anymore" explains Markus Zweckstetter at the Max Planck Institute for Biophysical Chemistry.

Exotic among proteins

Tau is special and with most biophysical methods, such as X-ray crystallography, not analyzable. Neither heat nor acid can harm the protein. Whereas most proteins fold to adopt the structure necessary for their function, tau can do it in the absence of folded structure, is very flexible and changes its form very rapidly.

With Nuclear Magnetic Resonance Spectroscopy the scientists where able to shed light on the structural properties of tau and followed its fast motions. For the first time detailed investigations of structural changes from a large almost unfolded protein where conducted. "The financial support was granted by the DFG Research Center "Molecular Physiology of the Brain" (CMPB) in Göttingen, the Volkswagen foundation and an institute overlapping Max Planck Society project, ‘Toxic protein conformation’ ", says Christian Griesinger, head of the department of NMR-based structural biology at the Max Planck Institute.

"We can directly observe which modules of the tau protein bind to microtubules. If the protein is equipped with more phosphates than usual we can see that in this case the binding becomes significantly weaker. Tau and microtubule proteins can no longer interact" summarizes Zweckstetter. As a direct consequence the transport along the microtubule "tracks" is disturbed and nerve cell endings do not grow.

The interplay with binding partners is also possibly broken down. "We now hold the tau protein in our hands and are able to look at the interaction with its binding partners in the cell in a very detailed way".

Tau as a drug target

Eckhard and Eva Mandelkow at the Max Planck Unit of Structural Molecular Biology in Hamburg are optimistic about using tau as a pharmaceutical target. On genetically altered mice, Eva Mandelkow and co-workers were able to show reversibility of the fatal consequences of tau aggregation. The next step for the Max Planck scientists would be the investigation of possible inhibitors which interact with the tau protein to prevent fibril formation.

Original work:

Marco D. Mukrasch, Stefan Bibow, Jegannath Korukottu, Sadasivam Jeganathan, Jacek Biernat, Christian Griesinger, Eckhard Mandelkow, Markus Zweckstetter
Structural Polymorphism of 441-residue tau at single residue resolution.
PLoS Biology, February 17, 2009.

Dr. Christina Beck | Max Planck Society
Further information:
http://www.mpg.de/english/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>