Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to fold proteins?

25.11.2011
For parvulins, one group of folding helper enzymes, new answers are at hand given by scientists from the Centre for Medical Biotechnology (ZMB) of University of Duisburg-Essen (UDE), Germany. Drs Peter Bayer and Jonathan W Mueller succeeded in visualising single hydrogen atoms within the core of highly diffracting crystals of the parvulin protein Par14.

Proteins are among the most important building blocks of life. To function properly within the body, their amino acid sequence needs to be folded into a defined three-dimensional structure within each cell. When this highly complex folding process fails, severe diseases such as cancer, Alzheimer’s or Parkinson’s can be the consequences.

For a long time, biomedical researchers tried to understand how folding proceeds in detail. One of these questions was how folding helper enzymes work. For parvulins at least, one group of folding helper enzymes, new answers are at hand given by scientists from the Centre for Medical Biotechnology (ZMB) of University of Duisburg-Essen (UDE), Germany. Drs Peter Bayer and Jonathan W Mueller succeeded in visualising single hydrogen atoms within the core of highly diffracting crystals of the parvulin protein Par14. Their study was published in the Journal of the American Chemical Society.

Among others, folding helper enzymes of the parvulin type are responsible to fold and maintain proteins in their native three-dimensional structure. Though profound knowledge exists on structure and mechanism of these enzymes, the role of individual amino acids in the catalytic core of parvulins remained unknown to date.

Hydrogen atoms are extremely small and hence normally invisible to the X-ray eye when investigating proteins. Within the core of the protein Par14, however, they could be visualised in corporation with scientists from University of Bayreuth.

„This has helped us enormously. We could realise an intricate network of hydrogen bonds that connects different amino acids within the core of the protein,” Dr. Mueller says. If one of these amino acids is replaced by another protein building block, catalytic activity nearly completely vanishes. This is first proof that an extended network of hydrogen bonds is a central feature of parvulin-type folding helper enzymes.

Further information:

Drs. Peter Bayer and Jonathan W. Mueller, phone +49-201/183-4676, peter.bayer@uni-due.de, www.uni-due.de/biochemie

Editorial office: Beate H. Kostka, Tel. 0203/379-2430

Beate Kostka | idw
Further information:
http://www.uni-due.de/biochemie
http://pubs.acs.org/doi/abs/10.1021/ja2086195

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>