Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Focusing on glial cells to overcome an intractable disease, ALS

27.10.2008
Amyotrophic lateral sclerosis (ALS) is a devastating disease, gradually causing paralysis of the muscles in the hand and leg. The discovery by Koji Yamanaka and colleagues at the Brain Science Institute that the glial cells cause damage to the nerve cells shows great promise in the development of new treatments to prevent the progression of ALS.

Amyotrophic lateral sclerosis (ALS) is a devastating disease. Once ALS develops, the motor neurons that control the movement of muscles gradually start to die off, causing paralysis of the muscles in the hand and leg.

The patient suffers from difficulty in using arms and legs, and in eating food and speaking. In about two to five years after the development of ALS, the muscles that control breathing are paralyzed, necessitating the support of a respirator. However, because the senses, memory, and cognitive functions remain normal, the patient is conscious of the progression of the disease.

Unfortunately, no effective treatment has been found. So far, research into understanding ALS has focused mainly on motor neurons. However, Koji Yamanaka, Unit Leader, and colleagues at the Brain Science Institute has focused on cells neighboring the motor neurons, and have met with success in their discovery that the glial cells cause damage to the nerve cells, thus accelerating the progression of the disease. This discovery shows great promise in the development of new treatments to prevent the progression of ALS.

ALS, an incurable disease that exclusively destroys motor neurons

In the spring of 1939, Lou Gehrig, a Major League Baseball player for the New York Yankees in the US, was mired in a prolonged batting slump. His fans and team-mates were very surprised because he was a real slugger, who enjoyed many seasons with high batting averages; his batting record included 23 grand slam home runs, a Major League record, and a consecutive game-playing streak of 2130. He was called "Iron Horse," but it was ALS that prevented him from continuing his playing streak. Lou Gehrig retired in June that year. Two years later he died young, at the age of 37 years.

In the US, ALS is known as 'Lou Gehrig's disease' and is one of the neurodegenerative diseases caused by the gradual death of nerve cells. In Alzheimer's disease, which is a well-known neurodegenerative disease, the patient develops dementia as a result of the gradual death of memory-related nerve cells. In ALS, in contrast, the patient becomes paralyzed because of the gradual death of the motor neurons in the brain and the spinal cord that control the muscles throughout the body.

There are about 6,000 patients with ALS and it is estimated that about 2,000 people may develop ALS every year in Japan. Patients with ALS develop the disease mostly at about 60 years of age, but young people can be affected, like Gehrig.

About 10% of patients with ALS develop the disease because they have inherited the causative genes, but no abnormal genes were found in the remaining 90%. "In other words, anybody can develop ALS," says Yamanaka, who has worked as a neurologist and has treated patients with ALS.

Neurologists are the medical doctors who have been trained in the diagnosis of diseases of brain, spinal cord, and muscle, and their treatment with drugs. In fact, however, there are many other diseases that cannot be treated with drugs because the causes are unknown. "I faced a big dilemma in clinical practice, seriously thinking, 'What can I provide for patients with ALS?' So, I thought I would like to elucidate the cause of the neurodegenerative disease to develop new cures."

Yamanaka trained and worked as a neurologist for four years. Then he devoted himself to basic research and started the study on ALS in 2001. Why did he select ALS as his subject of research? "I chose ALS because it is an incurable disease. ALS progresses quickly, and the symptoms of the patient worsen day by day. From the time the patient makes a clinical visit, he or she will be unable to walk within the first year, will be bed-ridden within the following year, and won’t be alive within three years from the first visit. I was greatly motivated by shocking experiences when I was responsible as a neurologist for treating patients with ALS."

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/frontline/588/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>