Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flying spider - Thekla's Wondrous Journey

15.06.2018

TU Berlin doctoral candidate Moonsung Cho examines how spiders use their silk threads to get airborne

Thekla opens her parachute, faces into the wind and is propelled away. Thekla is not some kind of extreme athlete though; she is a spider. Who would have thought that this little arachnid could "fly"? This phenomenon is nicely referred to as "ballooning", as the wind shapes Thekla's delicate silk threads into a balloon and she takes off. South Korean Moonsung Cho is doing his doctorate at TU Berlin’s Institute of Biology. In his doctoral thesis, he examines which factors determine flight.


Close-up of a crab spider

© Moonsung Cho

"Only a light wind is required to carry some species to heights of up to 4500 meters and for distances of several hundred kilometers."

The spider's abdomen contains what are known as spinnerets with several hundred spigots. Each spigot ejects a silk thread no more than 320 nanometers thick. This process can scarcely be perceived by the human eye in real time. Perhaps this explains why this phenomenon is underexplored?

... more about:
»Flying »silk »spiders »wind speed

Moonsung Cho plans to change this. He is doing his doctorate at the Institute of Biology under Professor Dr. Peter Neubauer, head of the Chair of Bioprocess Engineering, and Professor emeritus Ingo Rechenberg. "Currently there are only a few studies which have researched the behavior of flying spiders," he says. "The phenomenon is particularly common among young spiders. Some species suddenly fire threads into the air and only a light wind is required to carry them to heights of up to 4500 meters and for distances of several hundred kilometers."

"In my doctoral thesis I am examining which factors determine flight."

"Ballooning" plays an important role in the propagation of species of spiders. "In my doctoral thesis I am examining which factors determine flight. I am focusing particularly on gossamers." It is pure coincidence that spiders came to play the leading role in his doctoral thesis. "I made a video of spiders when I was taking a stroll on the Fliegeberg (The Fliegeberg is a hill serving as a monument to Otto Lilienthal's early efforts at flight.) in the Berlin district of Lichterfelde and observed that the spiders not only flew different distances, but also actually prepared themselves for flight," Moonsung Cho explains. "Directly before taking off, they stretched out one of their legs in order to test the wind speeds. I was fascinated by this at once."

"Young spiders require only a couple of threads to get airborne, while larger spiders require between 50 and 60."

This fascination is fully understandable given that flight behavior is Cho's area of expertise. Before coming to Berlin, 39-year-old Cho studied fluid mechanics. In order to examine the behavior of the flying spider, he placed 14 crab spiders on a small raised platform on the Fliegeberg and observed these passive aviators in their natural environment.

He then conducted the experiment in a laboratory, simulating different kinds of winds. One of the facts he discovered was that the spiders only take off when the wind speed is under three meters per second. He also observed that turbulent wind currents improved the spiders’ ability to float in the air. Of particular interest to note is that young spiders require only a couple of threads to get airborne, while larger spiders require between 50 and 60.

Cho still has some tests to conduct to complete his doctoral thesis. He is, however, already thinking about the possible wider application of his discoveries. "It may be possible to examine whether passive flying structures inspired by the phenomenon of thread gliding (Fadensegelflug) can be used to explore dangerous weather conditions such as tornadoes or clear-air turbulence. These are just considerations for now," Moonsung Cho concludes.

Test pilot Thekla is doing well, by the way. She and the other spiders were released back into nature after the laboratory experiments were concluded.

Image and video downloads:

• The "flight" of the spiders on video: https://youtu.be/_Ow1-62opK0
• Photos: http://www.tu-berlin.de/?195903&L=1

For further information please contact:
Moonsung Cho
TU Berlin
Email: m.cho@campus.tu-berlin.de

Stefanie Terp | idw - Informationsdienst Wissenschaft

Further reports about: Flying silk spiders wind speed

More articles from Life Sciences:

nachricht Scientists first to develop rapid cell division in marine sponges
21.11.2019 | Florida Atlantic University

nachricht CUHK Faculty of Engineering develops novel imaging approach
21.11.2019 | The Chinese University of Hong Kong

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>