Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flying fish glide as well as birds

10.09.2010
We're all familiar with birds that are as comfortable diving as they are flying but only one family of fish has made the reverse journey.

Flying fish can remain airborne for over 40s, covering distances of up to 400m at speeds of 70km/h. Haecheon Choi, a mechanical engineer from Seoul National University, Korea, became fascinated by flying fish when reading a science book to his children.

Realising that flying fish really do fly, he and his colleague, Hyungmin Park, decided to find out how these unexpected fliers stay aloft and publish their discovery that flying fish glide as well as birds on 10 September 2010 in The Journal of Experimental Biology at http://jeb.biologists.org.

But getting hold of flying fish to test in a wind tunnel turned out to be easier said than done. After travelling to Japan to try to buy fish from the world famous Tsukiji fish market, the duo eventually struck up a collaboration with the National Federation of Fisheries Cooperatives of Korea. Park went fishing in the East Korean Sea, successfully landing 40 darkedged-wing flying fish. Selecting five similarly sized fish, Park took them to the Korean Research Centre of Maritime Animals, where they were dried and stuffed, some with their fins extended (as in flight) and one with its fins held back against the body, ready to test their aerodynamics in the wind tunnel. Fitting 6-axis force sensors to the fish's wings and tilting the fish's body at angles ranging from degrees to 45 degrees, Park and Choi measured the forces on the flying fish's fins and body as they simulated flights.

Calculating the flying fish's lift-to-drag ratios – a measure of the horizontal distance travelled relative to the descent in height during a glide – Choi and Park found that the flying fish performed remarkably well: gliding better than insects and as well as birds such as petrels and wood ducks. And when they analysed how the fish's lift-to-drag ratio changed as they varied the tilt angle, the duo found that the ratio was highest and the fish glided furthest when they were parallel to the surface, which is exactly what they do above the ocean. Measuring the airborne fish's pitching moment, the duo also found that the fish were very stable as they glided. However, when they analysed the stability of the fish with its fins swept back in the swimming position it was unstable, which is exactly what you need for aquatic manoeuvrability. So flying fish are superbly adapted for life in both environments.

Knowing flying fish always fly near the surface of the sea, Choi and Park then decided to find out if the fish derived any benefit from the aerodynamic effect of flying close to the surface. Lowering the fish's height in the wind tunnel they found that the lift-to-drag ratio increased as the fish models 'glided' near the floor. And when Park replaced the solid surface with a tank of water, the lift to drag ratio rose even more, allowing the fish to glide even further. So, gliding near the surface of the sea helps the fish to go further.

Finally, Choi and Park directly visualised the air currents passing around the flying fish's wings and body. Blowing streams of smoke over the fish, the duo saw jets of air accelerating back along the fish's body. Park explains that the tandem arrangement of the large pectoral fin at the front and smaller pelvic fin at the back of the fish's body accelerates the air flow towards the tail like a jet, increasing the fish's lift-to-drag ratio further and improving its flying performance even more.

Having shown that flying fish are exceptional fliers, Choi and Park are keen to build an aeroplane that exploits ground effect aerodynamics inspired by flying fish technology.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Park, H. and Choi, H. (2010). Aerodynamic characteristics of flying fish in gliding flight. J. Exp. Biol. 213, 3269-3279.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>