Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Fly DNA, the Footprint of a Fly Virus

02.08.2012
The discovery of virus-like genes in the DNA of a commonly studied fruit fly could enable research on whether animals hijack viral genes as an anti-viral defense

In a curious evolutionary twist, several species of a commonly studied fruit fly appear to have incorporated genetic material from a virus into their genomes, according to new research by University at Buffalo biologists.

The study found that several types of fruit fly -- scientific name Drosophila -- harbored genes similar to those that code for the sigma virus, a fly virus in the same family as rabies. The authors believe the genetic information was acquired during past viral infections and passed on from fruit fly parent to offspring through many generations.

The discovery could open the door for research on why flies and other organisms selectively retain viral genes -- dubbed "fossil" genes -- through evolution, said lead author Matthew Ballinger, a PhD candidate in UB's Department of Biological Sciences.

One hypothesis is that viral genes provide an anti-viral defense, but scientists have had trouble testing this theory because viral genes found in animals are often millions of years old -- ancient enough that the genes' genetic sequence differs significantly from that of modern-day viruses.

The new study, in contrast, uncovered a viral gene that appears to be relatively young, with genetic material closely mirroring that of a modern sigma virus.

"We don't know that these genes have an anti-viral function, but it's something we'd like to test," Ballinger said. "It's tempting to think that these genes are retained and express RNA because there's some kind of advantage to the host."

He and his co-authors -- Professor Jeremy Bruenn and Associate Professor Derek Taylor in UB's Department of Biological Sciences -- reported their results online on June 26 in the journal Molecular Phylogenetics and Evolution. The research, supported in part by UB's Center for Advanced Molecular Biology and Immunology, will also appear in a forthcoming print edition of the journal.

"Our findings establish that sigma virus-like (genes) are present in Drosophila species and that these infection scars represent a rich evolutionary history between virus and host," the researchers wrote in their paper.

Another important contribution the study makes is advancing our understanding of how flies and other organisms acquire copies of virus-like genes in the first place.

The sigma virus belongs to a class of RNA viruses that lack an important enzyme, reverse transcriptase, that enables other viruses to convert their genetic material into DNA for integration into host genomes.

Given this limitation, how did sigma virus genes get into fly genomes?

The new study supplies one possible answer, suggesting that viruses may use reverse transcriptase present in host cells to facilitate incorporation of viral genes into host DNA.

In the genome of one fly, the researchers found a sigma fossil gene right in the middle of a retrotransposon, a genetic sequence that produces reverse transcriptase for the purpose of making new copies of itself to paste into the genome.

The position and context of the viral gene suggests that the retrotransposon made a copying error and copied and pasted virus genes into the fly genome. This is the clearest evidence yet that non-retroviral RNA virus genes naturally enter host genomes by the action of enzymes already present in the cell, Ballinger said.

The study builds on prior research by Taylor and Bruenn, who previously co-authored a paper showing that bats, rodents and wallabies harbor fossil copies of genes that code for filoviruses, which cause deadly Ebola and Marburg hemorrhagic fevers in humans.

The next step in the research is to continue exploring how and why flies and other organisms acquire copies of virus genes. To find out whether sigma virus-like genes have an anti-viral function in fruit flies, scientists could splice the genes into flies that can contract modern sigma viruses, or introduce modern sigma viruses into flies that already harbor the genes.

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht The neocortex is critical for learning and memory
20.11.2019 | Max-Planck-Institut für Hirnforschung

nachricht Structure of a mitochondrial ATP synthase
19.11.2019 | Science For Life Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Walking Changes Vision

20.11.2019 | Health and Medicine

Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

20.11.2019 | Materials Sciences

Black carbon found in the Amazon River reveals recent forest burnings

20.11.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>