Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Going with the flow

12.09.2012
Scientists who study tissue engineering and test new drugs often need to sort, rotate, move, and otherwise manipulate individual cells.

They can do this by prodding the cells into place with a mechanical probe or coaxing them in the desired direction with acoustic waves, electric fields, or flowing fluids.

Techniques that rely on direct physical contact can position individual cells with a high level of precision while non-contact techniques are often faster for sorting large numbers of cells. An international team of researchers has now developed a way to manipulate cells that combines some of the benefits of both contact and non-contact methods.

The researchers suspended a tiny plate in a microfluidic channel and used magnetic controls to move the plate up and down and back and forth. The movements generated fluid flow patterns that varied depending on characteristics of the oscillations such as frequency, magnitude, and phase, and the relative position of the plate and the channel wall.

Changing these parameters allowed the researchers to create different streamlines that either pulled or pushed a cell toward or away from the plate, as well as vortices that rotated the cell. When the cell reached the plate the researchers could also use the plate for precise, direct-contact manipulations.

The researchers demonstrated the technique, which they describe in a paper published in the American Institute of Physics' journal Applied Physics Letters, by manipulating a single bovine egg cell. As a next step, the team plans to demonstrate control of multiple cells simultaneously.

Article: "Local streamline generation by mechanical oscillation in a microfluidic chip for noncontact cell manipulations" is published in Applied Physics Letters.

Link: http://apl.aip.org/resource/1/applab/v101/i7/p074102_s1

Authors: Masaya Hagiwara (1), Tomohiro Kawahara (2, 3), and Fumihito Arai (4)

(1) Aerospace and Mechanical Engineering Department, University of California, Los Angeles
(2) Kyushu Institute of Technology, Japan
(3) Massachusetts Institute of Technology, Cambridge, Mass.
(4) Department of Micro-Nano Systems Engineering, Nagoya University, Japan

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>