Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Florida State researcher uncovers protein's role in cell division

16.06.2010
A Florida State University researcher has identified the important role that a key protein plays in cell division, and that discovery could lead to a greater understanding of stem cells.

Timothy L. Megraw, an associate professor in the College of Medicine, has outlined his findings in the cover story of the June 15 issue of Developmental Cell. The article, "CDK5RAP2 Regulates Centriole Engagement and Cohesion in Mice," was co-authored by researchers from the University of Texas Southwestern Medical Center at Dallas and the University of North Texas.

In August, Megraw received a four-year, $1.2 million grant from the National Institutes of Health to explore the role of centrosomes and cilia in cell division and their connections to human disease.

One long-term goal of Megraw's research has been to discover which parts of the cell play which roles in cell division. The centrosome is an important player. When a cell is ready to divide, it typically has two centrosomes, each containing a "mother and daughter" pair of centrioles tightly connected to each other, or "engaged."

"Two is important," Megraw said, "because you divide your genetic material into two equal sets. Each of these centriole pairs organizes the cytoskeletal machinery that pulls the chromosomes apart. So you don't want there to be more than two, because then you run the risk of unequal separation of the chromosomes."

The centrioles are supposed to replicate only once during the cell cycle. What keeps them from replicating more often was discovered a few years ago, Megraw said, when researchers identified mother-daughter engagement as the key. Once those two become disengaged, it acts as the "licensing" step, in effect giving the centrioles permission to replicate.

Unknown until now, Megraw said, was what regulated those centrioles to remain engaged until the proper time, to prevent excess replication. He suspected that the protein CDK5RAP2 was at least partly responsible. His team tested the protein's role using a mutant mouse in which the protein was "knocked out" and not functioning. These researchers looked for any effects on engagement and "cohesion," in which centriole pairs are tethered by fibers.

They noted in the mutant mouse that engagement and cohesion did not occur in their typical orderly fashion and that centrioles were more numerous and often single rather than paired. The amplified centrioles assembled multipolar spindles, a potential hazard for chromosomal stability. The researchers concluded that CDK5RAP2 is required to maintain centriole engagement and cohesion, thereby restricting centriole replication.

They are looking at how this discovery might apply to the human brain.

"The two mouse mutants we made mimic the two known mutations in humans in CDK5RAP2 — which has another name, MCPH3, in humans," Megraw said. "The disease associated with that is a small brain.

"Our next step is to look at the brains of the mice and try to determine what's wrong. We think it's the stem cells — that the progenitors that give rise to all the neurons in the brain are dying early or changing from a progenitor into a neuron too early."

Another gene called myomegalin might be functionally redundant to CDK5RAP2, Megraw said, adding, "Our goal is to knock that out, too."

The research his lab has done might also be applicable to cancer drugs for humans, he said. Centrosomes organize microtubules, which are structures in the cell that many important anti-cancer drugs target.

"The amplified centrioles and multipolar spindles suggest that the mutant mice may be more susceptible to developing cancers," Megraw said. "We are in a position to test this with our new mouse models."

College of Medicine student Zach Folzenlogen created the cover design for this issue of Developmental Cell.

Learn more about Megraw's research at http://www.med.fsu.edu/biomed/lab/megraw/.

Timothy Megraw | EurekAlert!
Further information:
http://www.fsu.edu

Further reports about: CDK5RAP2 anti-cancer drug cancer drug cell death cell division mouse model

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>