Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flipping the 'off' switch on cell growth

25.02.2013
Protein uses multiple means to help cells cope when oxygen runs low

A protein known for turning on genes to help cells survive low-oxygen conditions also slows down the copying of new DNA strands, thus shutting down the growth of new cells, Johns Hopkins researchers report. Their discovery has wide-ranging implications, they say, given the importance of this copying — known as DNA replication — and new cell growth to many of the body's functions and in such diseases as cancer.

"We've long known that this protein, HIF-1á, can switch hundreds of genes on or off in response to low oxygen conditions," says Gregg Semenza, M.D., Ph.D., a molecular biologist who led the research team and has long studied the role of low-oxygen conditions in cancer, lung disease and heart disorders. "We've now learned that HIF-1á is even more versatile than we thought, as it can work directly to stop new cells from forming." A report on the discovery appears in the Feb. 12 issue of Science Signaling.

With his team, Semenza, who is the C. Michael Armstrong Professor of Medicine at the Johns Hopkins University School of Medicine's Institute for Cell Engineering and Institute for Genomic Medicine, discovered HIF-1á in the 1990s and has studied it ever since, pinpointing a multitude of genes in different types of cells that have their activity ramped up or down by the activated protein. These changes in so-called "gene expression" help cells survive when oxygen-rich blood flow to an area slows or stops temporarily; they also allow tumors to build new blood vessels to feed themselves.
To learn how HIF-1á's own activity is controlled, the team looked for proteins from human cells that would attach to HIF-1á. They found two, MCM3 and MCM7, that limited HIF-1á's activity, and were also part of the DNA replication machinery. Those results were reported in 2011.

In the new research, Semenza and his colleagues further probed HIF-1á's relationship to DNA replication by comparing cells in low-oxygen conditions to cells kept under normal conditions. They measured the amount of DNA replication complexes in the cells, as well as how active the complexes were. The cells kept in low-oxygen conditions, which had stopped dividing, had just as much of the DNA replication machinery as the normal dividing cells, the researchers found; the difference was that the machinery wasn't working. It turned out that in the nondividing cells, HIF-1á was binding to a protein that loads the DNA replication complex onto DNA strands, and preventing the complex from being activated.
"Our experiments answered the long-standing question of how, exactly, cells stop dividing in response to low oxygen," says Maimon Hubbi, Ph.D., a member of Semenza's team who is now working toward an M.D. degree. "It also shows us that the relationship between HIF-1á and the DNA replication complex is reciprocal — that is, each can shut the other down."

Other authors on the report are Kshitiz, Daniele M. Gilkes, Sergio Rey, Carmen C. Wong, Weibo Luo, Chi V. Dang and Andre Levchenko, all of the Johns Hopkins University School of Medicine, and Deok-Ho Kim of the University of Washington, Seattle.

The study was funded by the U.S. Public Health Service (contracts N01-HV28180 and HHS-N268201000032c), the National Heart, Lung, and Blood Institute (grant number T32-HL007525), the National Institute of General Medical Sciences (grant number T32-GM008752), the American Heart Association (predoctoral fellowship 10PRE4160120), the Susan G. Komen Foundation (postdoctoral fellowship KG111254), the Foundation for Advanced Research in the Medical Sciences and the Johns Hopkins Institute for Cell Engineering.
Link to the paper: http://stke.sciencemag.org/cgi/content/full/sigtrans;6/262/ra10

Related stories:

Podcast on the Science Signaling paper: http://stke.sciencemag.org/cgi/content/full/sigtrans;6/262/pc5/DC1

Johns Hopkins Researchers Link Cell Division and Oxygen Levels: http://www.hopkinsmedicine.org/news/media/releases/johns_hopkins_
researchers_link_cell_division_and_oxygen_levels

Gregg Semenza on how doping in endurance sports and treating cardiovascular disease are interrelated: http://www.hopkinsmedicine.org/institute_cell_engineering/experts/meet_
scientists/gregg_semenza.html

Need Oxygen? Cells Know How to Spend and Save: http://www.hopkinsmedicine.org/news/media/releases/need_oxygen_cells_know
_how_to_spend_and_save

Johns Hopkins Researchers Discover How Breast Cancer Spreads to the Lung: http://www.hopkinsmedicine.org/news/media/releases/johns_hopkins_researchers

_discover_how_breast_cancer_spreads_to_lung

Shawna Williams | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Dissolving protein traffic jam at the entrance of mitochondria
23.05.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Producing tissue and organs through lithography
23.05.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Dissolving protein traffic jam at the entrance of mitochondria

23.05.2019 | Life Sciences

Fraunhofer IBMT at BIO 2019: Automation solutions for workflows in stem cell process engineering

23.05.2019 | Trade Fair News

Galaxies As “Cosmic Cauldrons”

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>