Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of flies and men

20.07.2012
What 10 000 fruit flies have to tell us about differences between the sexes

What do you get when you dissect 10 000 fruit-fly larvae? A team of researchers led by the EMBL- European Bioinformatics Institute (EMBL-EBI) in the UK and the Max Planck Institute of Immunobiology and Epigenetics (MPI) in Freiburg, Germany has discovered a way in which cells can adjust the activity of many different genes at once. Their findings, published online today in Science, overturn commonly held views and reveal an important mechanism behind gender differences.


The female (left) fruit fly, Drosophila melanogaster, is larger than the male (right).
Image credit: EMBL

Asifa Akhtar’s laboratory, previously at EMBL now at MPI, studies precisely how flies regulate an important set of genes. Females have two X chromosomes while males have only one, so the genes on the female X chromosomes somehow need to be kept from producing twice as many proteins as those on the male X chromosome. Male fruit flies get around this by making their X chromosome’s genes work double time: an epigenetic enzyme doubles the output of thousands of different genes. But just how much that doubled output is can vary tremendously from one gene to the next.

“Imagine that you have thousands of half-filled glasses of all different sizes and shapes,” explains Nick Luscombe, who led the work at EMBL-EBI. “Now imagine that you have to fill them all up to the top at the same time. This is an incredibly complex mechanism.”

To see how genes are expressed, scientists try to pinpoint signals that show when a gene increases its output. In most studies of this kind, this output is increased by a factor of between 10 and 100 when a gene is being expressed. In this study, the signal involved is miniscule: an increase of only a factor of two.

Observing such a faint signal is a major challenge. But thanks to the painstaking fly-larvae dissection efforts of graduate student Thomas Conrad, combined with the detailed analytical efforts of Florence Cavalli and Juanma Vaquerizas, the team gathered enough material to measure this output and compare males and females directly.

The scientists found twice as many DNA-transcribing (reading) proteins – known as polymerases – attached to the male X chromosome as to the female version. This means that the difference between males and females is rooted in the beginning of the transcription process, when the polymerase first binds to the DNA. This goes against the commonly held view that the regulation mechanism is kicked off during transcription.

“A factor of two appears minuscule, so it is not easy to measure accurately,” says Akhtar. “We were really doing a bulk analysis of several hundred genes, and that required a lot of careful bioinformatics analysis. Our group would run experiments, Nick’s would analyse the data, and then we would decide on new experiments together to be sure that what we were seeing was real.”

Discovering the machinery that doubles the expression of male X-chromosome genes could well have implications that go far beyond the humble fly. Speaking more technically, Luscombe says: “This is the first direct, clear mechanism that links a histone modification and the activity of a polymerase across thousands of genes”.

Looking into future directions, Akhtar says: “We now need to look more deeply into what makes this kind of mass regulation possible, and how it fits in with other means cells may have to fine-tune their use of genetic information.”

Published online in Science on 19 July 2012. DOI: 10.1126/science.1221428.

Policy regarding use
EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
Contacts:
contactpress@ebi.ac.uk
Mary Todd Bergman
Senior Communications Officer
EMBL-European Bioinformatics Institute
Tel: +44 (0)1223 494 665
mary@ebi.ac.uk
www.ebi.ac.uk/information/news
Twitter: @emblebi
Facebook: /EMBLEBI
Sonia Furtado Neves
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado Neves | EMBL Research News
Further information:
http://www.embl.org
http://www.embl.de/aboutus/communication_outreach/media_relations/2012/120719_Hinxton/

Further reports about: Bioinformatics EMBL-EBI MPI Max Planck Institute X chromosome different genes

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>