Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flavor research for consumer protection: benzaldehyde flavors can develop benzene under the influence of light

27.03.2020

In 2013, the German Stiftung Warentest found harmful benzene in drinks with cherry flavor. But how did the substance get into the drinks? Was the source benzaldehyde, an essential component of the cherry flavoring? And if so, how could the problem be solved? A new study by the Leibniz-Institute for Food Systems Biology and the Technical University of Munich (TUM) is now able to answer these questions.

According to the German Federal Institute for Risk Assessment (Bundesinstitut für Risikobewertung, BfR), benzene is mainly absorbed by our bodies via the air we breathe. Non-smokers take in an average of 200 micrograms of benzene per day. Smokers take in around ten times as much.


Starting point for the investigations was a pure cherry juice made from sour cherries in the laboratory.

Gisela Olias / Leibniz-LSB

But our food can also contain traces of this harmful substance and thus contribute to the exposure.

When the Stiftung Warentest examined soft drinks in 2013, they came across small quantities of benzene. One drink contained just under 4.6 micrograms of benzene per liter.

For comparison: In Germany, one liter of drinking water is allowed to contain only 1 microgram of the substance. At that time, experts at the Stiftung Warentest supposed that the odorant benzaldehyde was the cause of the benzene contaminations observed.

“As our research is specialized on odorants, we followed up on this supposition in the interest of consumer protection and at the suggestion of the German Association of the Flavor Industry (Deutscher Verband der Aromenindustrie, DVAI),” says lead author Stephanie Frank from the Leibniz-Institute for Food Systems Biology at the Technical University of Munich.

To do this, the team of scientists first established a reliable, highly sensitive quantitation method of benzene. Then, they carried out experiments with various model solutions which contained benzene-free benzaldehyde. The team also examined cherry juice produced under laboratory conditions, to which they also added the pure odorant.

Light is the crucial factor

“Our findings confirm the assumption of the Stiftung Warentest and also explain how the formation of benzene occurs. An important requirement in solving the problem in the long term,” reports food chemist Stephanie Frank.

As the study proves, the longer the odorant is exposed to light, the more benzaldehyde is converted into benzene. But the light intensity is also decisive. In contrast, the pH value, the oxygen content, the presence of metal ions or the temperature did not affect the benzene production in the model solutions.

To the surprise of the researchers, no benzene was formed in the cherry juice produced under laboratory conditions during light exposure. Frank reasons that it is possible that the dark red color of the drink acts as a light protection filter and prevents the formation of benzene. The benzene found in a few soft drinks sold commercially is probably the result of added cherry flavoring which has already been contaminated with benzene.

“This is why we must be sure to protect flavorings containing benzaldehyde from light, from when the substance is produced to when the product is sold, for example, by storing them in amber glass vials,” recommends Peter Schieberle, Professor for Food Chemistry at the Technical University of Munich.


Initiated by the research association Forschungskreis der Ernährungsindustrie e.V. (FEI), the research work in project AiF 18813 N was funded by the German Ministry of Economics and Energy based on a decision made by the German Bundestag as part of the program for promoting cooperative industrial research (IGF) via the German Federation of Industrial Research Associations “Otto von Guericke” e.V. (AiF).

Wissenschaftliche Ansprechpartner:

Dr. Gisela Olias
Leibniz-Institute for Food Systems Biology
at the Technical University of Munich
Press & Public Relations
Lise-Meitner-Str. 34, 85354 Freising, Germany
Tel.: +49 8161 71 2980 – E-mail: g.olias.leibniz-lsb@tum.de
Web: https://www.leibniz-lsb.de/en

Dr. Stephanie Frank
Section I / work group Sensory Systems Chemistry
E-Mail: s.frank.leibniz-lsb@tum.de

Originalpublikation:

S. Frank, A. Dunkel, P. Schieberle
Model studies on benzene formation from benzaldehyde
Eur Food Res Technol, 22. Feb. 2020 – DOI: 10.1007/s00217-020-03455-6.
https://link.springer.com/article/10.1007/s00217-020-03455-6

S. Frank, T. Hofmann, P. Schieberle
Quantitation of benzene in flavourings and liquid foods containing added cherry-type flavour by a careful work-up procedure followed by a stable isotope dilution assay
Eur Food Res and Technol, 245(8): 1605-1610 – DOI: 10.1007/s00217-019-03267-3.
https://link.springer.com/article/10.1007/s00217-019-03267-3

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/details/35952/ Press release on the TUM-website
https://www.leibniz-lsb.de/en Website of the Leibniz-Institute for Food Systems Biology
http://at the Technical University of Munich
https://www.fei-bonn.de/gefoerderte-projekte/projektdatenbank/aif-18813-n.projek... Website of the project (German)

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht Human skin is an important source of ammonia emissions
27.05.2020 | Max-Planck-Institut für Chemie

nachricht Biotechnology: Triggered by light, a novel way to switch on an enzyme
27.05.2020 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

German-British Research project for even more climate protection in the rail industry

28.05.2020 | Transportation and Logistics

A special elemental magic

28.05.2020 | Physics and Astronomy

Skoltech scientists get a sneak peek of a key process in battery 'life'

28.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>