Fish researcher demonstrates first 'non-visual feeding' by African cichlids

Most fish rely primarily on their vision to find prey to feed upon, but a University of Rhode Island biologist and her colleagues have demonstrated that a group of African cichlids feeds by using its lateral line sensory system to detect minute vibrations made by prey hidden in the sediments.

The lateral line system is composed of a canal embedded in the scales along the side of the body of a fish, around its eyes and on its lower jaw, which contain small groups of sensory hair cells that respond to water flow. The lateral line system aids some fish in swimming upstream, navigation around obstacles, and the detection of predators and prey.

According to Jacqueline Webb, a URI professor of biology, cichlids in the genus Aulonocara, which only live in Lake Malawi, have widened lateral line canals that are highly sensitive to vibrations and water flows. They feed by gliding through the water with their chin close to the sand like a metal detector, seeking out twitching arthropods and other unseen prey items.

There are about 16 species of Aulonocara cichlids in Lake Malawi, all of which feed in the sand.

“These cichlids join a short list of fish that have been demonstrated to use their lateral line system to feed,” said Webb. “Since most of the fish with widened lateral line canals are found in the deep sea, it's difficult to study them. These cichlids can now be used as a model system for studying widened canals, and we can apply what we learn from them to the fish in the deep sea.”

Webb analyzed video of the swimming behavior of the fish in response to live and dead brine shrimp located on the surface of the sandy substrate in a tank. She compared the fishes' ability to detect prey under light and dark conditions, and looked at their ability to detect prey when the lateral line system was chemically “deactivated.”

She found that the fish were able to find live prey easily, even in darkness, but not without a healthy lateral line system.

Her discovery opens the door to the study of the convergent evolution of wide canals and raises the question of whether fish that feed non-visually have an ecological advantage over visual-only feeders. Webb was recently awarded a $334,000 grant from the National Science Foundation to study the development and behavioral role of wide lateral lines.

“We also hope that this work will allow us to determine whether the sensory biology of a species can be used to predict its ecological success,” she said, “especially in environments where the water quality is poor or where there is increased turbidity. Do these fish have an advantage in water where it is difficult to see well?”

To examine these questions, Webb will use microCT imaging to create a three-dimensional reconstruction of the skulls of cichlids, while also developing what she calls a “chin tickler” – an artificial stimulation delivery system – to standardize the stimulation provided from beneath the sand to the cichlid test subjects.

Media Contact

Todd McLeish EurekAlert!

More Information:

http://www.uri.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors