Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First transcription atlas of all wheat genes expands prospects for research and cultivation

17.08.2018

Today the complete wheat genome (Triticum aestivum) has been published in “Science”. This sequence is the “anchor genome” for capturing the complete genetic diversity of wheat, which is a global food crop. A second publication in the same magazine describes the first opportunities this will create for scientists and practitioners.

Knowledge of the function of the genes, if possible all genes, in an organism is crucial. The expression of genes at various points in time, in various organs and under different environmental influences is a starting point for acquiring this knowledge. The transcription atlas now published for the wheat genome shows the direction in which research is developing.


Under the leadership of the John Innes Centre in Norwich (England), scientists from seven countries and 17 research institutes took part in the study. The German researchers were from the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben and the Helmholtz Centre in Munich.

For their study, the scientists analysed over 800 hundred expression data sets from 28 studies. They combined these with the fully annotated genome sequence to create a transcription atlas. The challenge here was not only the size but also the particular structure of the wheat genome. The wheat genome is polyploid, and is composed of three individual genomes with different antecedents.

In their study, the scientists give a very comprehensive insight into the spatiotemporal transcription landscape of polyploid wheat. “For the first time we are in a position to assign the proportions in the expression of characteristics to individual sub-genomes and to analyse the gene expression with the help of regulatory networks,” says Prof. Dr. Andrea Bräutigam (University of Bielefeld since October 2017), who participated in the project at the Leibniz Institute for Plant Genetics and Crop Plant Research.

“Striking is, that major differences in gene expression exist particularly at the ends of the chromosomes, coding for agronomically important traits.”, continues Bräutigam. The pre-condition for the study was the exact annotation of sequences. This took place at the Helmholtz Centre in Munich.

“Annotation of the genes, and the creation of family trees is the basis for clarifying structure and function. We were able to identify the gene loci precisely with specially developed algorithms,” according to Dr. Daniel Lang of the Helmholtz Centre in Munich.

Prof. Dr. Cristobal Uauy, Principal Investigator of the study at the John Innes Centre, says: “Our understanding of genomes has led to a dramatic progress in breeding and cultivation practices for other crops such as maize or rice. With the complete wheat genome available now, and follow-up work, it will be possible to identify genes in wheat more precisely and faster. This knowledge will help researchers and growers to use the allelic variations of polyploid wheat to improve targeted characteristics.”

Wissenschaftliche Ansprechpartner:

Prof. Dr. Andrea Bräutigam Phone: (+49) (0)521 106 8753
E-mail: andrea.braeutigam@uni-bielefeld.de

Dr. Manuel Spannagl, Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Plant Genome and Systems Biology, Ingolstädter Landstraße 1, 85764 Neuherberg, Tel. +49 89 3187 3584, +49 89 3187 3948,
E-mail: manuel.spannagl@helmholtz-muenchen.de
Dr. Daniel Lang, Tel. +49 89 3187 3583
E-mail: daniel.lang@helmholtz-muenchen.de

Prof. Dr. Cristobal Uauy
E-mail: Cristobal.Uauy@jic.ac.uk

Originalpublikation:

R. H. Ramírez-González et al. (2018): The transcriptional landscape of polyploid wheat (http://science.sciencemag.org/cgi/doi/10.1126/science.aar6089). Science, DOI: 10.1126/science.aar6089

Weitere Informationen:

http://pgsb.helmholtz-muenchen.de/plant/plantsdb.jsp
http://www.ipk-gatersleben.de/
https://www.jic.ac.uk/directory/cristobal-uauy/
http://www.wheatgenome.org/

Regina Devrient | idw - Informationsdienst Wissenschaft

Further reports about: Leibniz-Institut Plant Genetics cultivation genes genomes wheat

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>