Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018

Polyploidal cancer cells--cells that have more than two copies of each chromosome--are much larger than most other cancer cells, are resistant to chemotherapy and radiation treatments and are associated with disease relapse. A new study by Brown University researchers is the first to reveal key physical properties of these "giant" cancer cells.

The research, published Aug. 9 in Scientific Reports, shows that the giant cells are stiffer and have the ability to move further than other cancer cells, which could help explain why they're associated with more serious disease.


Polyploidal "giant" cancer cells are seen in the middle surrounded by other types of smaller cancer cells. The cells' nuclei are dyed blue. Actin, the cable-like structures that enable cells to move, is dyed red.

Credit: Michelle Dawson / Brown University

"I think these polyploidal giant cancer cells are the missing link for why tumors become so complex and heterogeneous so quickly," said Michelle Dawson, an assistant professor of molecular pharmacology, physiology and biotechnology at Brown and the study's corresponding author. "By understanding the physical properties of this weird population of cells we might identify a new way to eliminate them. Patients will benefit from that."

Dawson, who is also an assistant professor of engineering with an appointment in Brown's Center for Biomedical Engineering, worked with graduate student Botai Xuan and two undergraduate students on the study, which focused on a common strain of triple negative breast cancer, an extremely aggressive and hard-to-eradicate kind of breast cancer.

They found that 2-5 percent of cells from this breast cancer strain were polyploidal giant cancer cells with four, eight or sixteen copies of each chromosome, instead of the normal two. The cells with more chromosomes were proportionally larger, which is similar to polyploidal cells in other organisms.

Commercially available strawberries, for example, tend to be much larger than wild strawberries because the cells of commercial varieties have eight copies of each chromosome. After treating the breast cancer cells with a common chemotherapy, the team found three to 10 times more giant cancer cells. This both confirmed that the giant cells were more drug resistant and gave the researchers more giant cells to study.

Then Xuan, first author on the paper, injected nano-sized fluorescent beads into the cancer cells ¾ both polyploidal giant cells and normal ¾ using a specialized technique involving high pressure helium gas. He found that the beads moved about twice as slow inside the giant cells, indicating the cells were stiffer. This stiffness allows the giant cells to get so big, Dawson said.

The research also found that giant cells had more actin, a biopolymer that forms wire-cable-like structures inside cells to help give the cells their shape and allow them to move. When cancer cells move, they can spread or metastasize, a word no patient wants to hear. Giant cancer cells move differently than standard cancer cells too. Like the allegorical tortoise, they move slower than other cancer cells, but go further.

The Dawson Lab tested a drug that interferes with actin and found it softened the giant cancer cells, but Dawson cautioned this would not be a possible treatment for triple negative breast cancer, as it would turn a hypothetical patient into mush. However, a next step for her research is to look at the giant cancer cells at the molecular level to try to find specific differences in order to develop a targeted treatment.

"This first paper really just gave us a lot of structural information," Dawson said, adding they need to do more research to understand any differences between polyploidal giant cancer cells found before chemotherapy, polyploidal giant cancer cells formed during treatment and the daughter cells they "bud off" in a very atypical manner.

They are also going to look for polyploidal giant cancer cells in samples from patients.

Though the study focused on giant cancer cells found in a strain of triple negative breast cancer, they have found giant cancer cells in other kinds of breast cancer, as well as strains of ovarian and prostate cancer.

"The giant cancer cells break all the cancer rules -- they are stiffer, they are larger, they have a very abnormal and non-polarized cell structure -- and they can move a long way," Dawson said. "Without basic science research, we don't get creative new ideas that lead to breakthrough treatments for patients."

###

Other authors on the study were Deepraj Ghosh, Emily Cheney and Elizabeth Clifton. Funding was provided by National Institute of Health NIGMS through COBRE Center for Cancer Research Development (P30 GM110750).

Media Contact

Mollie Rappe
mollie_rappe@brown.edu
401-863-1862

 @brownuniversity

http://news.brown.edu/ 

Mollie Rappe | EurekAlert!
Further information:
https://news.brown.edu/articles/2018/08/giantcells
http://dx.doi.org/10.1038/s41598-018-29817-5

Further reports about: Chemotherapy actin breast cancer cancer cells strawberries

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>