Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In fireflies, flightless females lose out on gifts from males

06.04.2011
Firefly partners work together to find work-family balance

Every parent with young children knows that couples need to work together to accomplish the myriad tasks waiting both at work and at home. But it may come as a surprise that fireflies also juggle their commitments to find a comfortable work-family balance.

According to new research led by biologists at Tufts University's School of Arts and Sciences, wingless "stay-at-home" female fireflies get less support from their mates than females who are able to fly.

There are more than 2000 species of fireflies around the globe, and these beetles show astoundingly diverse lifestyles. For some familiar backyard sparklers, both the male and female firefly have wings and can easily take to the air.

However, many female fireflies can only dream about flying because they don't have any wings. These wingless belles lounge on the ground or clamber onto twigs, where they lure flying males with a steady luminescent glow -- the common European glow-worm is a shining example.

A study published in the April 2011 issue of the journal Evolution (online Dec. 22) by Tufts biologists and collaborators at the University of Georgia and the Taiwan Museum of Science reveals a surprising link between these flightless females and how much their male partners are willing to contribute to their collective reproductive gain.

Like all creatures, firefly females maximize their evolutionary success by producing lots of offspring. Previous work by the Tufts research team has shown that some male fireflies donate a "nuptial gift" to females during mating. This gift contains sperm wrapped up in a nutritious high-protein package that helps a female to produce more eggs. Because most fireflies stop eating once they become adults, male nuptial gifts are significant for both sexes.

To explore these insects' work-family balance, the Tufts researchers set out to answer the question: When firefly females are flightless, does it change the division of reproductive labor between the sexes? That is, do firefly males still give nuptial gifts?

"These females are definitely committed to being 'stay-at-home-moms' because they're basically a huge sac of eggs," said Sara Lewis, professor of biology at Tufts and co-author of the paper. By giving up wings, such flightless females can devote all their energy to churning out eggs and so gain an advantage over their winged cousins.

"Since wingless females would already enjoy high reproductive output, we thought males might no longer need to support their partners' reproduction with added nutrients," explained Tufts doctoral candidate Adam South, the lead author on the paper.

Working with firefly experts from around the world, the Tufts biologists studied the reproductive structures of 32 different species. They confirmed that in those with flying females, males did bestow nuptial gifts. In most species with flightless females, however, the males did not do so.

Looking Back at the First Fireflies

The researchers also peered back in time to the first fireflies.

In collaboration with colleagues in Georgia and Taiwan, the Tufts biologists used existing knowledge of the evolutionary relationships among different firefly species to examine how flight and nuptial gifts have changed over time.

In very early fireflies, the biologists discovered, females sported normal wings and accepted nuptial gifts from their male suitors. But the evolutionary tree also showed that nearly every time females stopped flying around, their partners retreated to transferring only sperm, revealing a surprising evolutionary correlation between these male and female traits.

So just like people, firefly couples also adjust how much effort each one will devote to work -- flight in this case -- or to family. With stay-at-home moms investing more in reproduction, some firefly males apparently decide that gifts are no longer worth giving.

Lewis noted that it remains to be seen whether this co-evolutionary linkage has also developed in other insects with flightless females. It is also unclear why females in some species of fireflies, but not others, have been able to survive and thrive without flight.

This research was supported by National Science Foundation Grant #IOB-0543738.

South, Adam, Stanger-Hall, Kathrin, Jeng, Ming-Luen, and Lewis, Sara M., "Correlated Evolution of Female Neoteny and Flightlessness with Male Spermatophore Production in Fireflies (Coleopetera: Lampyridae)," Evolution, no. doi: 10.1111/j.1558-5646.2010.01199.x.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university is widely encouraged.

Kim Thurler | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>