Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingerprints Tell All

29.03.2012
Progress in fingerprint analysis

It has long been well established that fingerprints can be used to identify people or help convict them of crimes. Things have gone a lot further now: fingerprints can be used to show that a suspect is a smoker, takes drugs, or has handled explosives, among other things. In the journal Angewandte Chemie, Pompi Hazarika and David Russell describe the noteworthy progress that has recently been made.


When a finger touches a surface, sweat and oil-containing substances like sebum leave behind a print that is invisible to the naked eye. There are several ways to make it visible, like dusting with powder or spraying with reagents or “superglue”. A new technique that improves sensitivity involves the deposition of gold nanoparticles attached to cage-like molecules filled with dyes or other luminescent makers that cause the fingerprint pattern to glow. Gold nanoparticles attached to antibodies against amino acids are better at revealing older, dried fingerprints.

If a person has taken drugs, traces are released in his or her sweat. A team working with Russell at the University of East Anglia (Norwich, UK) has recently developed a method by which magnetic particles are equipped with antibodies that bind specifically to certain drug or nicotine metabolites.

In a second step, they apply a fluorescent antibody, which binds to the first antibody and indicates the presence of the corresponding drug by glowing under a fluorescence microscope. By using this method, the researchers were able to simultaneously detect several different narcotics in a single fingerprint.

Other innovative approaches use chromatographic and mass spectrometric techniques to identify the components of sweat and their decomposition products in fingerprints. One exciting development is the use of desorption electrospray ionization mass spectrometry (DESI). Charged droplets of solvent are sprayed onto the surface, forming a film that dissolves materials out of the fingerprint.

Additional solvent droplets impact the film and release the dissolved analytes from the surface so that they can be analyzed by mass spectrometry. An image of the fingerprint is then computed. Traces of drugs and explosives can also be shown.

Another interesting technique is infrared spectroscopy, which has been used to separate overlapping fingerprints from two individuals by means of their different sebum contents to produce two separate images. It is also possible to detect traces of explosive. Raman spectroscopy can be used to identify pharmaceuticals like aspirin and paracetamol (acetaminophen), as well as caffeine and starch in fingerprints.

The goal is to develop a cost-effective, rapid, portable, miniature system that can detect fingerprints and the chemical components in them. This would not only be useful for criminologists, but also for doping tests and diagnostics.

About the Author
David Russell is Professor of Chemistry at the University of East Anglia, Norwich, UK. His research is currently focused on the synthesis and functionalisation of nanoparticles. These functionalised particles are used for the development of in vitro diagnostics, intracellular measurement of target analytes and for the delivery of photosensitisers for photodynamic cancer therapy.
Author: David Russell, University of East Anglia, Norwich (Großbritannien), http://www.uea.ac.uk/che/dar
Title: Advances in Fingerprint Analysis
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201104313

David Russell | Angewandte Chemie
Further information:
http://www.uea.ac.uk/che/dar
http://pressroom.angewandte.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>