Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fine-scale analysis of the human brain yields insight into its distinctive composition

13.04.2012
Study published in Cell by Allen Institute for Brain Science examines cellular and molecular organization of human and mouse brain

Scientists at the Allen Institute for Brain Science have identified similarities and differences among regions of the human brain, among the brains of human individuals, and between humans and mice by analyzing the expression of approximately 1,000 genes in the brain.

The study, published online today in the journal Cell, sheds light on the human brain in general and also serves as an introduction to what the associated publicly available dataset can offer the scientific community.

This study reveals a high degree of similarity among human individuals. Only 5% of the nearly 1,000 genes surveyed in three particular regions show differences in expression between humans. In addition, comparison of this dataset to data in the Allen Mouse Brain Atlas indicates great consistency between humans and mice, as the human visual cortex appears to share 79% of its gene expression with that of the mouse.

The dataset, which is publicly available online via the Allen Brain Atlas data portal (www.brain-map.org) as part of the Allen Human Brain Atlas, holds promise for spurring further discoveries across the research community. Specifically, it contains detailed, cellular-level in situ hybridization gene expression data for about 1,000 genes, selected for their involvement in disease or neural function, in two distinct cortical areas of several disease-free adult human brains, both male and female.

Genes analyzed in this study fall into three categories: genes that serve as indicators of cell types found in the cortex, genes that are related to particular neural functions or diseases of the central nervous system, and genes that hold value for understanding the neural evolution of different species.

Human brain

The analysis published today reveals high consistency of gene expression among different regions of the human cortex—the outer rind of the mammalian brain responsible for sophisticated information processing—specifically the temporal and visual cortices. The vast majority of genes expressed in these areas, 84%, demonstrate consistent expression patterns between cortical areas. This finding supports the hypothesis that there are common principles of organization and function that apply throughout the cortex, and therefore studying one area in great detail—the visual cortex, for example—may hold promise for uncovering fundamentals about how the whole brain works. The study also illustrates widespread conservation of gene expression among human individuals. The study reports that of the genes analyzed, only 46 (5%) showed variation in expression among individual, disease-free human brains in the cortical areas examined.

Distinctions among species

Several findings in the study point to differences and similarities between humans and mice. As the mouse is the most common model for the study of human brain function and diseases, it is crucial to understand how well it represents the human system and where its accuracy may be limited. Overall, the results of this study indicate good conservation of gene expression between the two species. While the majority of gene expression is similar, the authors of the study report some striking differences.

The findings reveal distinct molecular markers specific to each species. Tracing those genes attributable to particular cell types—the building blocks of brain circuits—the study authors point to a unique molecular signature for each cortical cell type. These molecular signatures may reflect and contribute to species-specific functions.

According to the study, only 21% of gene expression in the visual cortex exhibited differences between human and mouse, but the nature of those differences may reveal more about what makes us uniquely human. While very little variation among genes in the disease and evolution categories was observed, substantial variation was reported among genes in the cell types category, with a marked number of those genes known to be involved in cell-to-cell communication. These data suggest that intercellular communication may be a key link to unique brain function in humans.

Advancing the field

To date, other studies examining human gene expression have employed either a segmented region of the brain or a select set of genes without specific anatomic information. This human brain dataset as well as the Allen Mouse Brain Atlas and the hundreds of studies published using its data demonstrate that adding high-resolution, cellular-level spatial information to gene expression profiling studies allows scientists to learn a great deal more about how genes contribute to cell types, neural circuits, and ultimately brain function.

The study published today offers a deep introduction to the kinds of information that can be mined from this dataset and the types of hypotheses that it can be used to test. The entire body of data is incorporated into the Allen Human Brain Atlas and is freely available via the Allen Brain Atlas data portal at www.brain-map.org.

Citation: Zeng et al., Large-Scale Cellular-Resolution Gene Profiling in Human Neocortex Reveals Species-Specific Molecular Signatures. Cell (2012) doi: 10.1016/j.cell.2012.02.052

About the Allen Institute for Brain Science

The Allen Institute for Brain Science (www.alleninstitute.org) is an independent, 501(c)(3) nonprofit medical research organization dedicated to accelerating understanding of the human brain by fueling discovery for the broader scientific community. Through a product-focused approach, the Allen Institute generates innovative public resources used by researchers and organizations around the globe. Additionally, the Institute drives technological and analytical advances, thereby creating new knowledge and providing new ways to address questions about the brain in health and disease. Started with $100 million in seed money from philanthropist Paul G. Allen, the Institute is supported by a diversity of public and private funds. The Allen Institute's data and tools are publicly available online at www.brain-map.org.

Steven Cooper | EurekAlert!
Further information:
http://www.alleninstitute.org
http://www.brain-map.org

More articles from Life Sciences:

nachricht Organized chaos in the enzyme complex: surprising insights and new perspectives
06.07.2020 | Max-Planck-Institut für Entwicklungsbiologie

nachricht Gut bacteria improve type 2 diabetes risk prediction
06.07.2020 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Coupled hair cells in the inner ear – „Together we are strong!“

06.07.2020 | Health and Medicine

Innovations for sustainability in a post-pandemic future

06.07.2020 | Social Sciences

Carbon-loving materials designed to reduce industrial emissions

06.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>