Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings in the war on the tubercle bacterium

09.03.2011
Tuberculosis kills two million people each year and is once again gaining ground also in Sweden and other Western countries. Researchers at Linköping University in Sweden are now presenting new findings that show how the tubercle bacterium manages to survive inside the body’s macrophage cells in order eventually to blow them up and spread their infection.

The bacterium Mycobacterium tuberculosis is a successful organism that lives in an estimated one third of the world’s population. But only about five percent of those infected develop the disease.

“We also know that many people do not become infected despite exposure to the infection. This is a question we are looking for an answer to,” says Amanda Welin, who is now presenting her doctoral dissertation in medical microbiology.

The research group has studied phenomena in both the bacterium and the macrophage, whose task is to knock out infectious substances that get into the body.

One weapon is enzymes, which make the ingested bacteria feel sickly. Enzymes work best in acidic environments, with a pH level under 6. For their part, the bacteria can strike back by releasing substances that prevent the pH level from going down. Amanda Welin has shown that this warfare is directly reflected in the growth or reduction of bacteria.

These bacteria also have a capacity to kill macrophages and spread to new cells. Welin shows that this is done by having a tiny protein cause cell death, necrosis, which in turn leads to inflammation of the tissue.

To carry out these studies, Amanda Welin and her colleagues developed a new method for determining the number of bacteria inside a cell. They use a gene from sea-fire organisms, which cause strange lights in seawater at night. When this gene is added to the genes of the bacterium, the bacterium begins to produce the same luminescent substance, luciferase, as the sea-fire organism does. Thanks to this, it’s possible to monitor developments inside the macrophage – the intensity of the light radiating outward corresponds to the number of bacteria inside. If their number grows, this indicates that they have begun to multiply inside the human cell.

The method can be used to search for plausible drug candidates. In that field, the Linköping scientists are collaborating with a group of colleagues in Sudan, who are testing, among other things, various medicinal plants with substances that could possibly be used as active ingredients to combat tuberculosis.

The dissertation Survival strategies of Mycobacterium tuberculosis inside the human macrophage is published by LiU Electronic Press, It was publicly defended at Linköping University on March 4, 2011.

Contact:Amanda Welin: mobile phone: +46 (0)705-464749, amanda.welin@liu.se

Anika Agebjörn | idw
Further information:
http://www.vr.se
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-65452

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>