Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings uncover new details about mysterious mimivirus

29.04.2009
An international team of researchers has determined key structural features of the largest known virus, findings that could help scientists studying how the simplest life evolved and whether the unusual virus causes any human diseases.

The mimivirus has been called a possible "missing link" between viruses and living cells. It was discovered accidentally by French scientists in 1992 but wasn't confirmed to be a virus until 2003.

The virus infects amoebas, but it is thought to possibly be a human pathogen because antibodies to the virus have been discovered in pneumonia patients. However, many details about the virus remain unknown, said Michael Rossmann, Purdue University's Hanley Distinguished Professor of Biological Sciences.

Now a team of researchers from Purdue, the University of California at Irvine and the University of the Mediterranean in Marseilles, France, have thrown more light on the mimivirus' makeup.

The scientists have determined the basic design of the virus' outer shell, or capsid, and also of the hundreds of smaller units called capsomeres making up this outer shell. Findings also confirmed the existence of a starfish-shaped structure that covers a "special vertex," an opening in the capsid where genetic material leaves the virus to infect its host, and an indentation in the virus's genetic material itself is positioned opposite this opening, Rossmann said.

"The findings are important in terms of studying the evolution of cells, bacteria and viruses," said Siyang Sun, a postdoctoral research associate working in Rossmann's lab. "The mimivirus is like an intermediate between a cell and a virus. We usually think of cells as being alive and a virus is thought of as being dead because it needs a host cell to complete its life cycle. The mimivirus straddles a middle ground between viruses and living cells, perhaps redefining what a virus is.”

The virus approaches the size of bacteria and is about half of a micron in diameter, more than 10 times larger than the virus that causes the common cold and large enough to be seen with a light microscope. Other viruses are too small to be seen with conventional light microscopes.

The findings are detailed in a research paper that will appear online April 28 in the journal PLoS Biology, published by the Public Library of Science, a nonprofit organization of scientists and physicians. The paper's lead author was Chuan Xiao, a former Purdue postdoctoral research associate and now an assistant professor in the Department of Chemistry at the University of Texas at El Paso.

Researchers had previously been unable to determine the virus's structure because they had assumed that, like many other viruses, it's capsid possessed a design known as icosahedral symmetry.

Xiao discovered the true structure when he decided to try reconstructing the virus assuming it possessed not standard icosahedral symmetry but another configuration called five-fold symmetry.

"If you start out thinking the object has icosahedral symmetry, then you assume there are 60 identical pieces, and that influences how you reconstruct the virus's structure," Rossmann said.

Researchers took images of the virus using an atomic force microscope, revealing a pattern of holes regularly spaced throughout the virus's outer shell.

"The capsids of most other large, pseudo icosahedral viruses do not contain such holes, and their function is unknown," Rossmann said.

The researchers used a method called cryo-electron microscopy reconstruction to determine the structure details. The reconstruction method enables researchers to produce three-dimensional structures by combining two-dimensional pictures, much like a complete architectural drawing of a house can be assembled with two-dimensional drawings of the sides, the roof and other elements.

Using five-fold symmetry revealed that one side of the virus's capsid is slightly different than the others, whereas all sides are the same in a regular icosahedron.

An icosahegron has a roughly spherical shape containing 20 triangular facets and 60 identical subunits. Like an icosahedron, the mimivirus capsid also has 20 facets. However, unlike an icosohedron, five facets of the capsid are slightly different than the others and surround the special vertex. Icosohedra contain 12 similar vertices, whereas the mimivirus contains eleven such vertices, with the 12th being different than the others.

The new reconstructed picture of the virus matched features seen using the atomic force microscope picture, Rossmann said.

The starfish-shaped feature apparently opens up like a blooming flower when the virus is ready to infect its host amoeba, enabling the virus to eject its DNA for insertion into the host, Rossmann said.

"In addition, we think the indentation of the genetic material has something to do with how the genome comes out of the virus," he said. "There is a relationship between the shape of the genome and the special vertex."

The research, which is funded by the National Institutes of Health, is ongoing, with future work probing additional properties of the virus, particularly the structure of the starfish-shaped feature and how it functions.

The paper was written by Xiao; microscope expert Yurii G. Kuznetsov in the Department of Molecular Biology and Biochemistry at UC Irvine; Sun; postdoctoral research associates Susan L. Hafenstein and Victor A. Kostyuchenko and electron microscopist Paul R. Chipman, from Purdue; research scientist Marie Suzan-Monti and Didier Raoult, a professor of microbiology, both from the University of the Mediterranean; Alexander McPherson, a professor of molecular biology and biochemistry at UC Irvine; and Rossmann.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Michael Rossmann, (765) 494-4911, mr@purdue.edu
Siyang Sun, siyang@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>