Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings give hope to plant extract as possible lupus treatment

25.09.2014

New findings by a biomedical engineer and his team at the University of Houston (UH) raise hope for a new class of drugs to treat lupus that may not include the long list of adverse risks and side effects often associated with current treatments for this disease.

Lupus, or systemic lupus erythematosus, is a progressive, degenerative disease in which the immune system turns against itself, attacking a person's healthy tissue, cells and organs. Symptoms range from debilitating pain and fatigue to organ failure and a host of other impairments. An estimated 1.5 million Americans, and at least five million people worldwide, have a form of lupus.


New findings by UH biomedical engineer Chandra Mohan and his team raise hope for a new class of drugs to treat lupus that may not include the long list of adverse risks and side effects often associated with current treatments.

Credit: Cullen College of Engineering Office of Communications

Though there is no cure, a UH researcher and his team are actively working toward finding new treatments and, ultimately, a cure. Chandra Mohan, Hugh Roy and Lillie Cranz Cullen Endowed Professor of biomedical engineering in the UH Cullen College of Engineering, and his group's latest work could lead to new, more natural therapeutics for lupus that use a plant-derived chemical. The promising findings were recently published in Arthritis & Rheumatology, the monthly journal of the American College of Rheumatology.

With only one drug specifically approved for the treatment of lupus in the past 50 years, lupus patients are commonly treated with steroids, a class of immunosuppressive drugs that delay the development and progression of the disease by suppressing the immune system. By suppressing the immune system in its entirety, however, this mode of treatment carries with it an increased risk of infections and other harmful side effects.

In this latest research, Mohan and his colleagues present new findings that detail the use of a synthetic, plant-derived compound – abbreviated CDDO – that was shown to effectively suppress the multiple steps of lupus development in murine models, including the onset of kidney disease.

One of the most common organs to be attacked by lupus is the kidney, manifesting in lupus nephritis. While this condition doesn't affect all lupus sufferers, an estimated 40 percent of lupus patients develop it. Lupus nephritis, which causes inflammation of the kidneys and impairs their ability to effectively rid the body of waste products and other toxins, is the leading cause of lupus-related deaths and results in tens of thousands of hospitalizations per year.

"The development of lupus is a two-step reaction. First, the immune system develops antibodies that attack the body's own DNA, then that activated immune system attacks the kidneys," Mohan said. "We found that CDDO may block both of these steps."

Mohan says there is much left to be discovered about CDDO, including how it works in suppressing the progression of lupus. The next step for this research is to confirm whether the CDDO compound suppresses the immune system across the board, or whether it simply suppresses the activation of the specific signaling pathways that lead to the development of lupus. To find this out, Mohan's group will test it in the lab to see if they can mount the proper immune response. If not, Mohan says the compound likely could be suppressing the entire immune system, which is the current problem with using steroids to treat lupus. Even if the compound is shown to be generally immunosuppressive, however, it still may be a better treatment option than steroids for some patients.

"The most exciting part of this research is that CDDO is originally plant-derived, so it's relatively natural and carries less chance of side effects," Mohan said. "That's a very important point, because many of the current therapeutic agents being used for lupus have significant side effects. As far as we have tested in these experiments, we found that the CDDO compound had no known side effects. Additionally, compared to many other test compounds we've previously tried for treating lupus, this one appears to be much more effective."

While it will take time to validate this before the compound can move from testing in the lab to clinical trials in humans, Mohan is encouraged by the prospect of treating lupus patients with more natural compounds that have fewer side effects.

###

About the University of Houston

The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 40,900 students in the most ethnically and culturally diverse region in the country. For more information about UH, visit the university's newsroom at http://www.uh.edu/news-events/.

About the Cullen College of Engineering

The UH Cullen College of Engineering, established in 1941, is accredited by the Engineering Accreditation Commission of ABET. More than 4,600 students are enrolled in engineering courses – 3,536 undergraduates, as well as 817 master's and doctoral students in biomedical, chemical, civil, computer, electrical, environmental, geosensing systems, industrial, mechanical and petroleum engineering. The college also offers interdisciplinary graduate programs in subsea, aerospace, materials, and computer and systems engineering. Chemical and mechanical engineering have ranked among the top programs nationally.

To receive UH science news via email, sign up for UH-SciNews at http://www.uh.edu/news-events/mailing-lists/sciencelistserv/index.php.

For additional news alerts about UH, follow us on Facebook at http://www.facebook.com/UHNewsEvents and Twitter at http://twitter.com/UH_News

Lisa Merkl | Eurek Alert!

Further reports about: Mohan compounds extract findings immune immune system lupus treatment nephritis steps steroids treating

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

For a lower climate footprint, vegetarian diet beats local

23.10.2018 | Studies and Analyses

Long-distance travels complicate conservation of migratory birds

23.10.2018 | Earth Sciences

Enabling a plastic-free microplastic hunt: "Rocket" improves detection of very small particles

22.10.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>