Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding the Achilles heel of cancer

28.03.2018

A research team led by Monica Bettencourt Dias, from Instituto Gulbenkian de Ciencia (IGC, Portugal), discovered important features of cancer cells that may help clinicians fighting cancer.

The researchers observed that the number and size of tiny structures that exist inside cells, called centrioles, are increased in the most aggressive sub-types of cancer. This study will be published in Nature Communications* on the 28th of March.


Healthy cells (left image) display four centrioles, a normal number (in yellow). On the contrary, breast cancer cells (triple negative) have extra centrioles (here 16, right image).

Credit: Gaëlle Marteil, IGC.

Cancer is a very diverse disease with some tumours being more aggressive and more resistant to chemotherapy than others. Clinicians are eager to find novel diagnostic, prognostic and treatment tools that allow them to predict outcomes and treat patients in a more personalised way. The study now published may contribute to this process.

About 100 times smaller than the cross section of a hair, centrioles have been called the cell´s "brain", as they play crucial roles in cell multiplication, movement and communication. Their number and size are highly controlled in normal cells. Since their discovery, more than one century ago, it has been proposed that an abnormal increase in the number of these structures may induce cancer..

Bettencourt-Dias's team investigated the incidence of centriole abnormalities in human cancer cells. The researchers thoroughly analysed a panel of 60 human cancer lines originated from 9 distinct tissues. Their results reveal that cancer cells often have extra and longer centrioles, which are absent in normal cells.

Importantly, the research team observed that supernumerary centrioles are more prevalent in aggressive breast - as the triple negative - and colon cancer. Also, the team discovered that longer centrioles are excessively active, which perturbs cell division and could favour cancer formation.

"Our data confirm that deregulated number and size of centrioles inside cells is associated with malignant features. This finding may help establishing centriole properties as a way of classifying tumours in order to establish prognosis and predict treatment response", says Gaelle Marteil, first author of this study and researcher at Bettencourt-Dias laboratory.

What is the next step? "The cell lines that we analysed are already well characterized in terms of genetic changes and resistance to therapeutics. We are pursuing our studies in collaboration with Nuno Barbosa-Morais' team at Instituto de Medicina Molecular, in Lisbon, and Joana Paredes at I3S, in Porto, to explore new mechanisms and therapeutics that could target centrioles in cancer", adds Monica Bettencourt-Dias.

###

This study involved an international research team from Instituto Gulbenkian de Ciencia, I3S- Instituto de Investigação e Inovação em Saúde (Portugal), IPATIMUP - Instituto de Patologia e Imunologia Molecular (Portugal), Instituto de Medicina Molecular (Portugal), Instituto Portugues de Oncologia (Portugal), and Dana-Faber Cancer Institute (USA). This work was funded by European Research Council (ERC), European Molecular Biology Organization (EMBO), Fundação para a Ciencia e a Tecnologia (FCT, Portugal), and FCT- Harvard Medical School Program Portugal.

* Marteil, G., Guerrero, A., Vieira, A.F., de Almeida, B.P., Machado, P., Mendonça, S., Mesquita, M., Vilarreal, B., Fonseca, I., Francia, M.E., Dores, K., Martins, N.P., Jana, S.C., Tranfield, E.M., Barbosa-Morais, N.L., Paredes, J., Pellman, D., Godinho, S.A., Bettencourt-Dias, M. (2018) Over-elongation of Centrioles in Cancer Promotes Centriole Amplification and Chromosome Missegregation. Nature Communications. DOI: 10.1038/s41467-018-03641-x.

Ana Mena | EurekAlert!

Further reports about: Achilles CANCER cancer cells human cancer normal cells tumours

More articles from Life Sciences:

nachricht Protective protein in the eye lens affects protein oxidation: Guardian angel of the eye
29.01.2020 | Technische Universität München

nachricht Single-cell sequencing of leukemia therapy: Shared genetic program, patient-specific execution
29.01.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Potential pivot for a more effective cancer immunotherapy

29.01.2020 | Life Sciences

Towards better anti-cancer drugs: New insights into CDK8, an important human oncogene

28.01.2020 | Life Sciences

Rice lab turns trash into valuable graphene in a flash

28.01.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>