Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding the right combination

22.02.2010
A combination of positive and negative regulation narrowly restricts a genome-shuffling enzyme’s activity

Diversity may be the spice of life, but it’s also the key to an effective immune system, as B lymphocytes rely on extensive recombination to shuffle their antibody-coding genes to produce molecules that can recognize a diverse array of potential threats.

Antibodies with established targets can also undergo further alterations to modulate the immune response that they trigger upon antigen binding. Known as ‘class switch recombination’ (CSR), this process relies on activation-induced cytidine deaminase (AID), an enzyme that induces major rearrangements in antibody-coding loci.

Unregulated, AID can generate cancer-causing genomic rearrangements, and a team led by Tasuku Honjo and Hitoshi Nagaoka at the University of Kyoto, with Sidonia Fagarasan’s group at the RIKEN Research Center for Allergy and Immunology in Yokohama, recently set about exploring the mechanisms that help constrain expression of the Aicda gene.

“AID is tightly regulated in activated B cells and speculated to be a B cell-specific factor—however, the Aicda promoter is not lymphocyte specific,” says Thinh Huy Tran, lead author of the team’s recent article in Nature Immunology1. Comparison of the mouse and human versions of this promoter revealed four discrete segments that had been closely conserved throughout evolution. To assess their contributions to gene specificity, the researchers generated artificial promoters consisting of various subsets of these conserved regions, which they used to regulate a bioluminescence-producing ‘reporter’ gene in cultured lymphocytes.

They found that two of these four segments directly contribute to specificity. ‘Region 2’ contains binding sites for transcription factors known to guide B lymphocyte development, but also contains sequences that strongly inhibit Aicda expression. The other promoter segment, ‘region 4’, appears to participate in the strong induction of this gene in response to signaling factors that trigger CSR in vivo.

“Our results demonstrate for the first time that two separate regions contribute together to regulating Aicda expression, in which silencers are derepressed by B lineage-specific and stimulation-responsive enhancers,” says Tran. “The negative factors that restrict Aicda expression might contribute to retaining genomic stability, while region 4 is essential for Aicda response in B cells to environmental stimulation ... and is critical to generate antibody diversification.”

The investigators are now examining the individual importance of these various putative Aicda regulators, but also intend to further explore the bigger picture of the effects of AID dysregulation. “We plan to investigate the correlation between Aicda expression levels with mutation frequency in non-immune genes ... and the role of AID in tumor development,” says Tran.

The corresponding author for this highlight is based at the Laboratory for Mucosal Immunity, Research Center for Allergy and Immunology

Journal information
1. Tran, T.H., Nakata, M., Suzuki, K., Begum, N.A., Shinkura, R., Fagarasan, S., Honjo, T. & Nagaoka, H. B cell–specific and stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers. Nature Immunology 11 148-154 (2010).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6182
http://www.researchsea.com

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>