Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Figuring out the 3-D shape of molecules with a push of a button

20.06.2017

An international team of researchers led by Carnegie Mellon University chemist Roberto R. Gil and Universidade Federal de Pernambuco chemist Armando Navarro-Vázquez has developed a program that automates the process of figuring out a molecule's three-dimensional structure. The technique, described in a paper in Angewandte Chemie, compresses a process that usually takes days into minutes and could shorten the pipeline of drug discovery by reducing human error.

Figuring out the chemical structure of a molecule from scratch is an essential part of researching chemicals that come from nature, or "natural products." For substances with possible pharmaceutical use, that structure can reveal how the substance might interact with the human body.


A computer program can figure out the 3-D structure (right) of molecules like Yohimbine with the push of a button. Molecules with the same 2-D structure (left) can have different 3-D structures.

Credit: 2D structure: acdx (Wikipedia) 3D structure: MindZiper (Wikipedia)

"If the molecule is going to be a drug, you need to know the shape of the molecule to know how it's going to interact with a receptor," says Gil, a professor in the Department of Chemistry at Carnegie Mellon's Mellon College of Science.

The first step in determining a molecule's structure is determining its atomic building blocks, followed by finding out its two-dimensional structure, which shows how each atom is connected to each other. While some atomic bonds are stiff, others can rotate around a joint, making it possible for molecules with the same components and two-dimensional (2D) structures to have different three-dimensional (3D) shapes.

Small differences in shape can translate into large changes in how drugs act in the body. For instance, rotating one bond in the popular pain reliever ibuprofen makes it completely inactive. Similarly, starch and cellulose share the same 2D structure but have different 3D shapes. That difference is the reason why humans can digest grains and not wood.

Gil and Navarro-Vázquez have been working for eight years to simplify the process of finding and sorting through the possible 3D shapes for any given 2D structure. And with the laboratory tools for gathering data on a molecule's 3D structure becoming more widespread and available, the time was right to develop a method to automate and streamline the process.

The researchers created a program, written in the Python programming language, that makes use of Residual Dipolar Coupling (RDC) information, a measure of the distance between atoms extending from rotating bonds. Fed with data about a given molecule from RDC experiments, the program generates possible ways that the molecule can exist in three dimensions, and picks the most likely option.

The technique is most effective at tackling the 3D structure of organic molecules that are small-to-medium sized, and relatively rigid, with carbon atoms packed into rings rather than linked into long, bendy chains. The team tested their program on six such molecules, including naltrexone, a medication used to block the effects of opioids, and strychnine, a pesticide.

First, they determined the 2D structure of each molecule using a computer-assisted structure elucidation (CASE) program, aided by a collaboration with Clemens Anklin, vice-president for NMR applications and training at Bruker Corporation. They fed that information, along with RDC data about the molecule, into their new program. In each case, their program was able to pick out the correct 3D structure.

"You push a button, and with little human or no human intervention, you go from 2D to 3D structure in one shot," says Gil.

But just as important as the program's speed is its thoroughness.

"The amount of natural products that are wrongly reported, where the reported structure does not correspond to the real structure, is really large," says Navarro-Vázquez, a chemistry professor at Universidade Federal de Pernambuco in Brazil. This program could be a valuable way to check for possible structures that researchers might otherwise miss, helping them avoid their own inherent biases.

Gil traces his vision of this process back to his time as a graduate student and a conversation with a mentor 30 years ago about the idea that chemists could one day put a substance into a machine and see its structure with the push of a button. Soon, he hopes, programs like his and Navarro-Vázquez's creation will integrate the earlier steps of the process, bringing that vision even closer to reality.

"We are very close," says Gil. "This is the dream of any chemist."

###

The study was supported by the National Science Foundation (CHE-0130903, CHE-1039870, and CHE-1111684) and Fundação do Amparo a Ciência e Tecnologia (APQ-0507-1.06/15).

Media Contact

Jocelyn Duffy
jhduffy@andrew.cmu.edu
412-268-9982

 @CMUScience

http://www.cmu.edu 

Jocelyn Duffy | EurekAlert!

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>