Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fetal stem cells from placenta may help maternal heart recover from injury

15.11.2011
Researchers from Mount Sinai School of Medicine have discovered the therapeutic benefit of fetal stem cells in helping the maternal heart recover after heart attack or other injury.

The research, which marks a significant advancement in cardiac regenerative medicine, was presented today at the American Heart Association's (AHA) Scientific Sessions 2011 in Orlando, Florida, and is also published in the current issue of Circulation Research, a journal of the AHA.

In the first study of its kind, the Mount Sinai researchers found that fetal stem cells from the placenta migrate to the heart of the mother and home to the site where an injury, such as a heart attack, occurred. The stem cells then reprogram themselves as beating heart stem cells to aid in its repair. The scientists also mimicked this reprogramming in vitro, showing that the fetal cells became spontaneously beating heart cells in cell culture, which has broad-reaching implications in treating heart disease.

Previous studies have documented a phenomenon in which half of women with a type of heart failure called peripartum cardiomyopathy saw their condition spontaneously recover in the months following pregnancy. Based on this evidence, the Mount Sinai team wanted to determine whether fetal stem cells played a role in maternal recovery.

They evaluated the hearts of pregnant female mice that underwent mid-gestation heart injury and survived. Using green fluorescent protein in the fetuses to tag the fetal stem cells derived from the placenta, they found that the green fluorescent stem cells homed to the injured hearts of their mothers, grafted onto the damaged tissue, and differentiated into smooth muscle cells, blood vessel cells, or another type of heart cell called cardiomyocytes.

"Our research shows that fetal stem cells play an important role in inducing maternal cardiac repair," said Hina Chaudhry, MD, Director of Cardiovascular Regenerative Medicine at Mount Sinai School of Medicine, and principal investigator of the study. "This is an exciting development that has far-reaching therapeutic potential."

With a broader understanding of the role of fetal stem cells, Dr. Chaudhry and her team then isolated the fetal cells that had grafted onto the maternal hearts and recreated the environment in vitro. They found that the cells spontaneously differentiated into cardiac cells in cell culture as well.

Until now, researchers have had limited success in discovering the regenerative potential of stem cells in heart disease. The use of bone marrow cells in cardiac regeneration has largely failed as well. Dr. Chaudhry's research team has found that fetal cells may potentially be a viable therapeutic agent, both through in vivo and in vitro studies.

"Identifying an ideal stem cell type for cardiac regeneration has been a major challenge in heart disease research," said Dr. Chaudhry. "Embryonic stem cells have shown potential but come with ethical concerns. We've shown that fetal stem cells derived from the placenta, which is discarded postpartum, have significant promise. This marks a significant step forward in cardiac regenerative medicine."

These findings have implications beyond cardiovascular disease. The fetal stem cells traveled only to the injury site on the damaged heart, and not to other undamaged organs, meaning research on the benefit of these cells on organs damaged by other diseases would be beneficial. Importantly, a significant percentage of the fetal cells isolated from maternal hearts express a protein called Cdx2, which indicates that the cells may not have developed mature immune recognition molecules and therefore are unlikely to cause a negative immune response, which occurs in organ transplant.

"Our study shows the promise of these cells beyond just cardiovascular disease," said Dr. Chaudhry. "Additionally, this breakthrough greatly underscores the importance of translational research. As a clinician who also has a basic science laboratory, I am in the unique position to assess the needs of my patients, evaluate how they respond to treatment and recover from illness, and bring that anecdotal knowledge to the experiments in my lab."

The research was supported by a grant from the National Institutes of Health (NIH) to Dr. Chaudhry, a scholarship from the NIH to the first author of the study,graduate student Rina Kara, and an American Heart Association medical student fellowship.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>