Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faulty gene stops cell 'antennae' from transmitting

31.05.2010
An international group of researchers has identified the genetic cause of an inherited condition that causes severe fetal abnormalities.

The work, co-led by geneticists at the UCSD Institute for Genomic Medicine, together with colleagues from institutes and universities in Paris, Rome and England, should allow couples at risk of conceiving babies with the profoundly disabling Meckel-Gruber and Joubert syndromes to be identified beforehand through genetic screening.

The researchers' findings – which show how the disease gene stops cells' finger-like antennae or 'cilia' from detecting and relaying information – may ultimately lead to treatments for more common related disorders, such as spina bifida, retinal blindness and polycystic kidney disease. The paper will be published May 30 issue in Nature Genetics.

"By understanding the science behind this relatively rare condition, we can gain insight into other pediatric diseases that are far more frequent," said UCSD researcher Joseph Gleeson, MD, professor of neurosciences and pediatrics at UC San Diego School of Medicine and Howard Hughes Medical Institute Investigator, who directed the research. "Spina bifida, for example, is one of the most common birth defects, affecting one in every 1000 newborns."

Meckel-Gruber syndrome and Joubert syndrome are part of a wider family of disorders known as 'ciliopathies' – so-called because the cilia are not working as they should and do not respond properly to signals.

This lack of communication can prevent growing embryos from developing a correct neural tube, which leads to abnormalities of the brain. Affected embryos can also develop abnormalities in the eyes, extra fingers or toes, and multiple cysts in their kidneys.

"These abnormalities are often observed in prenatal ultrasounds, but expectant parents want to have a sense of what their child will be like, will he or she learn to walk, talk, and see," said lead author Professor Enza Maria Valente from the Mendel Institute in Rome. "This type of research can give us answers to these important questions."

To find the gene responsible for Meckel-Gruber and Joubert syndromes, the researchers examined DNA from families with a history of the disorder, from skin cells donated by patients, and from cells grown in the laboratory. They also studied zebrafish, which were used because the embryos are transparent during development.

The work identified a previously unknown gene – TMEM216 – as a cause of Meckel-Gruber and Joubert syndromes. They also showed that the faulty TMEM216 gene stopped cells from making a protein that is needed for cilia signalling.

Because Meckel-Gruber and Joubert syndromes are recessive genetic disorders, only couples who both have a copy of the disease gene are at risk of conceiving babies with these birth defects. The condition is more common in certain close-knit populations where the gene has been passed down from generation to generation. These include families of Ashkenazi Jewish origin.

"Accurate genetic testing for TMEM216 will be particularly important for families throughout the world that have a history of ciliopathies caused by mutations to this gene," said Professor Attie-Bittach from the University of Paris.

"Now that we have identified a gene that causes Meckel-Gruber syndrome and Joubert syndrome, the role of particular signalling pathways as the embryo is developing can also be more clearly understood," added Professor Colin Johnson from the University of Leeds in the UK.

Additional contributors from the Neurogenetics Laboratory, Institute for Genomic Medicine, Department of Neurosciences and Pediatrics, Howard Hughes Medical Institute at UC San Diego include Jeong Ho Lee, Jennifer L Silhavy, Ji Eun Lee, Jerlyn C Tolentino and Dominika Swistun.

This work was supported by the National Institutes of Health, the Italian Ministry of Health, Pierfranco and Luisa Mariani Foundation, American Heart Association, BDF Newlife, the Medical Research Council and the Sir Jules Thorn Charitable Trust, l'Agence National pour la Recherche, Burroughs Wellcome Fund, Howard Hughes Medical Institute and a National Research Service Award fellowship.

Media contact: Debra Kain, 619-543-6163, ddkain@ucsd.edu

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>