Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatheads: How Neurons Protect Themselves Against Excess Fat

11.04.2013
We’re all fatheads. That is, our brain cells are packed with fat molecules, more of them than almost any other cell type. Still, if the brain cells’ fat content gets too high, they’ll be in trouble.

In a recent study in mice, researchers at Johns Hopkins pinpointed an enzyme that keeps neurons’ fat levels under control, and may be implicated in human neurological diseases. Their findings are published in the May 2013 issue of Molecular and Cellular Biology.

“There are known connections between problems with how the body’s cells process fats and neurodegenerative diseases such as Alzheimer’s, Parkinson’s and amyotrophic lateral sclerosis,” says Michael Wolfgang, Ph.D., an assistant professor in the Department of Biological Chemistry at the Johns Hopkins University School of Medicine’s Institute for Basic Biomedical Sciences. “Now we’ve taken a step toward better understanding that connection by identifying an enzyme that lets neurons get rid of excess fat that would otherwise be toxic.”

Wolfgang says one clue to the reason for the neurodegeneration/fat-processing connection is that neurons, unlike most cells in the body, seemingly can’t break down fats for energy. Instead, brain cells use fats for tasks such as building cell membranes and communicating information. At the same time, he says, they must prevent the buildup of unneeded fats. Neurons’ fat-loss strategy is rooted in the fact that a fat molecule attached to a chemical group called coenzyme A will be trapped inside the cell, while the coenzyme A-free version can easily cross the cell membrane and escape. With this in mind, Wolfgang, along with colleagues Jessica Ellis, Ph.D., and G. William Wong, Ph.D., focused their study on an enzyme, called ACOT7, which is plentiful in the brain and lops coenzyme A off of certain fat molecules.

The team created mice with a non-working gene for ACOT7 and compared them with normal mice. The scientists saw no obvious differences between the two types of mice as long as they had ready access to food, Wolfgang says. But when food was taken away overnight, so that the mice’s cells would start to break down their fat stores and release fat molecules into the bloodstream for use as energy, ACOT7’s role began to emerge. While the normal fasting mice were merely hungry, the mice lacking ACOT7 had poor coordination, a sign of neurodegeneration. More differences emerged when the researchers dissected the mice; most strikingly, the livers of mice missing ACOT7 were “stark white” with excess fat, Wolfgang says.

Wolfgang cautions that his group’s results are not quite a smoking gun for ACOT7’s involvement in human neurological disease, but says they add to existing circumstantial evidence pointing in that direction. He notes that a special diet that changes the levels of fats and sugars in the bloodstream – the so-called ketogenic diet – can prevent seizures in epileptics; in addition, one study found that patients with epilepsy have less of the ACOT7 enzyme than healthy people.

“We think ACOT7’s purpose is to protect neurons from toxicity and death by allowing excess fat to escape the cells,” Ellis says. “Our next step will be to see whether this enzyme does indeed play a role in human neurological disease.”

Link to the paper: http://mcb.asm.org/content/33/9/1869.full

The study was funded by the American Heart Association (grant numbers SDG2310008 and SDG2260721), the National Institute of Neurological Disorders and Stroke (grant number NS072241), the National Institute of Diabetes and Digestive and Kidney Diseases (grant number DK084171) and the Baltimore Diabetes Research and Training Center (grant number P60DK079637).

Shawna Williams | Newswise
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>