Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat-Free Diet Reduces Liver Fat in Fat-Free Mice

05.02.2009
Researchers at UT Southwestern Medical Center have uncovered crucial clues about a paradoxical disease in which patients with no body fat develop many of the health complications usually found in obese people.

The findings in mice, appearing online today in Cell Metabolism, have led to the initiation of a National Institutes of Health-funded clinical trial to determine whether eating an extremely low-fat diet could prevent many of the metabolic complications brought on by lipodystrophy.

Lipodystrophies are metabolic disorders characterized by the selective loss of fat tissues and complications of insulin resistance. Scientists speculate that the condition could be caused by the failure of stem cells to become fat cells.

“These patients don’t have fatty tissue, even inside their abdomen,” said Dr. Abhimanyu Garg, professor of internal medicine at UT Southwestern and senior author of the study. “They basically lack all the fat we see in a typical person, but their livers are loaded with fat. That’s a big problem because too much fat in the liver leads to liver damage.

“We cannot do anything to reverse fat loss, but our findings might lead to the development of new therapies for the metabolic complications of lipodystrophy, such as diabetes, fatty liver and high triglycerides,” said Dr. Garg, an investigator in the Center for Human Nutrition.

Dr. Garg has been studying patients with lipodystrophies for more than 20 years. He and colleagues at UT Southwestern have led the way in identifying gene mutations responsible for several forms of lipodystrophy and in identifying novel therapeutic approaches for these patients.

In this study, researchers genetically engineered mice to lack a specific enzyme called AGPAT2, which is also lacking in humans with generalized lipodystrophy. Under normal conditions, AGPAT2 is involved in the production of fat in body fat cells. In 2002 Dr. Garg’s lab found that the AGPAT2 gene is mutated in patients with congenital generalized lipodystrophy.

“We generated this mouse model to learn why humans with this type of lipodystrophy develop metabolic complications,” Dr. Garg said.

The researchers found that mice without the AGPAT2 enzyme used a novel, previously uncharacterized pathway to synthesize fat in their liver. Dietary fat also contributed to fat accumulation in the liver. Typically, particles called chylomicrons carry dietary fat throughout the body and release it in peripheral tissues so that it can either be stored in adipose tissue for later use or immediately burned as energy by muscles. Normally, adipose tissue provides fatty acids for fat synthesis in the liver. In these lipodystrophic mice, however, the adipose tissue did not release the excess fatty acids and the dietary fat accumulated in the liver.

What is surprising about this, Dr. Garg said, is that the amount of fat stored in the liver dropped substantially when researchers put the lipodystrophic mice on a fat-free diet. “Just eliminating the dietary fat reduced liver triglycerides by approximately 50 percent,” he said.

In addition to establishing a clinical trial, Dr. Garg said the next step is to study the stem cells from the mice with lipodystrophy in order to determine why their stem cells become bone and muscle but not fat.

Other UT Southwestern researchers involved in the research were Dr. Victor Cortés, lead author of the study and postdoctoral researcher in molecular genetics; Dr. David Curtis, surgery resident; Dr. Xinli Shao, research scientist in immunology; Dr. Vinay Parameswara, instructor of internal medicine; Dr. Jimin Ren, instructor in radiology at the Advanced Imaging Research Center; Dr. Victoria Esser, associate professor of internal medicine; Dr. Robert Hammer, professor of biochemistry; Dr. Anil Agarwal, associate professor of internal medicine; and Dr. Jay Horton, professor of internal medicine.

The research was funded by the NIH, Southwestern Medical Foundation and the Perot Foundation. Dr. Cortés is supported by a postdoctoral fellowship from Pontificia Universidad Católica de Chile and a presidential fellowship from the Chilean government.

Dr. Abhimanyu Garg -- http://www.utsouthwestern.edu/findfac/professional/0,2356,12461,00.html

Kristen Holland Shear | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>