Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why do fat cells get fat? New suspect ID'd

26.06.2012
Surprising finding about WNT signaling points to Sfrp5 as a potential target for anti-obesity drugs

As the world fights obesity at the human level, scientists at the University of Michigan and their colleagues have made a surprising finding at the microscopic level that could help fuel that fight.

Their work helps explain why fat-storing cells get fatter, and burn fat slower, as obesity sets in. If their findings from mice can be shown to apply to humans, they may provide a new target for obesity-fighting drugs.

By studying the tiny signals that fat-storing cells send to one another, the team has shown a crucial and previously unknown role for a molecule called Sfrp5.

The results, which appear online today and will be in the July issue of the Journal of Clinical Investigation, surprised them.

In a series of experiments, the team showed that Sfrp5 influences a signaling pathway known as WNT to stimulate fat cells – called adipocytes – to grow larger and to suppress the rate at which fat is burned in the mitochondria inside them.

By stopping cells from making Sfrp5, they were able to make mice that didn't get as fat as quickly because their adipocytes didn't grow large – even when the mice were fed a high-fat diet. They even showed the impact when transplanting fat from Sfrp5—deficient mice into other mice.

The research was performed with National Institutes of Health funding in the U-M Medical School laboratory of Ormond MacDougald, Ph.D., the Faulkner Professor in the Department of Molecular & Integrative Physiology, a professor of internal medicine and a member of U-M's Brehm Center for Diabetes Research.

Working with postdoctoral fellow and first author Hiroyuki Mori, Ph.D., and colleagues, MacDougald says the team built on its previous findings about the importance of WNT signaling in fat cell development.

"WNT signaling plays a crucial role in regulating, and inhibiting, white fat cell growth and the recruitment of new cells to store fat," he explains. "But it appears that in obesity, Sfrp5 can interfere with that signaling, and may create a feedback loop that keeps stimulating production of more of itself."

He notes that the new results contradict previous work published by another group, which found essentially the opposite role for Sfrp5. A commentary accompanying the new U-M paper, by scientists from Denmark, notes the strong evidence behind the new findings and emphasizes the importance of further research on the topic.

MacDougald and his team zeroed in on Sfrp5 after years of studying WNT signaling between adipocytes. They and other teams had already seen that the amounts of Sfrp5 produced within fat tissue were higher in obese animals.

They were able to breed mice that could not make the molecule, and expected to see that these mice resisted obesity because they couldn't convert more cells into adipocytes to store excess fat from their high-fat diet.

But instead, they found that the mice without Sfrp5 did have just as many fat cells as other mice -- but that these cells didn't accumulate fat and grow bigger. As a result, the mice didn't get fat, no matter how rich their diet.

Looking more closely at Sfrp5-deficient mice, they saw a surge of activity in expression of genes related to mitochondria – the furnaces inside cells that burn fat or other fuel to power cell activity. It was as if the furnaces had been stoked when Sfrp5 wasn't present, so fat could be burned at a higher rate than normal.

"From our results, we believe that Sfrp5 is an important moderator of mitochondrial activity, the first time this has been seen for the WNT signaling pathway in adipocytes," says Mori. "This underscores the complexity of WNT signaling."

In essence, MacDougald says, Sfrp5 poses as a decoy receptor for WNT signals to bind to, keeping them from binding to the receptors on the cell surface that they otherwise would bind to. With WNT signaling reduced, cells store fat and grow larger, and don't burn it as quickly. Then, the cells produce even more Sfrp5, creating the feedback loop that perpetuates the tendency for adipocytes to accumulate lipid.

While pharmaceutical companies are already looking at WNT signaling as a possible target for drugs related to bone formation, the new findings suggest that perhaps the same signaling pathway could be a target for anti-obesity drugs.

But, MacDougald cautions, the findings need to be explored further in both mice and humans. With the obesity epidemic putting hundreds of millions of people at risk of all types of diseases, that research has a special urgency behind it.

In addition to MacDougald and Mori, the research team included Tyler C. Prestwich, who received a Ph.D. from U-M's Cell and Molecular Biology program and is a co-first author, Michael A. Reid, former U-M postdoctoral fellow and Proteostasis Therapeutics employee Kenneth Longo, former postdoctoral fellow Isabelle Gerin, current fellow William Cawthorn, Vedrana S. Susulic, Venkatesh Krishnan, and Andy Greenfield.

The work was supported by grants DK51563 and DK62876 from the NIH's National Institute for Diabetes and Digestive and Kidney Diseases, and by Mori's mentor-based postdoctoral fellowship from the American Diabetes Association. The team used two core research facilities at the U-M Medical School: the Animal Phenotyping Core of the Nutrition Obesity Research Center, supported by NIH grant DK089503, and the Morphology Core of the Michigan Diabetes Research and Training Center, supported by NIH grant P60DK020572.

Reference: Journal of Clinical Investigation http://www.jci.org Vol. 122 No. 7, July 2012, Online ahead of print - doi:10.1172/JCI63604

Kara Gavin | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>