Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast cerebellar networks compensate for inadequacies of the sensory system

27.06.2012
Biological control of body movements with its versatility and elegance remains unsurpassed compared to that of any man-made machine and continues to thrill and delight us, both by watching or by performing them ourselves.

Top athletes and other virtuosi can perform sequences of movements with a temporal precision of a millisecond (1/1000 second). However, how this is accomplished remains a mystery.

In a recent study published in the journal Nature communications by Fahad Sultan (Hertie Institute for Clinical Brain Research, University Hospital Tübingen) and colleagues the researchers were able to show that brain-networks that control movements work with remarkable temporal precision.

Using a combination of electrical stimulation and functional magnetic resonance imaging (fMRT) the researchers could watch how the brain reacted to synthetic stimuli. In a collaboration between the Hertie Institute for Clinical Brain Research and the Max Planck Institute for Biological Cybernetics within the Werner-Reichardt-Center for Integrative Neuroscience (CIN), the researchers showed in animal experiments with rhesus monkeys that stimulation of the cerebellum led to activities in widespread brain regions with a thousandth of a second precision.

The study could also demonstrate for the first time responses in brain regions that are known to deal with tactile, vestibular, visual and auditory sensory information processing. The results show that motor control and sensory perception are intertwined even at higher integration centers of the brain. The results also help to solve another problem. During the movement of an arm for example the sensory receptors signal the brain the state of the arm.

However due to the delays introduced by the nerve fibers slow conduction velocity, these information come too late to be of use for adjusting the movement by the brain. Scientists have suspected for some time that the cerebellum could provide for the solution. The cerebellum could provide forward models of motor plants predicting the sensory consequences of actions.

These results are of considerable relevance for understanding the consequences of diseases of the cerebellum for motion control and motion perception. Consequences that have to be taken into account for rehabilitation and so far have only been made on purely empirical methods. The results also have important consequences for robotics, which deals with similar problems in motor control.

Title publication: Cerebellar pathways project to motor and sensory parietal networks with high temporal precision.
Published 26.06.2012 in Nature Communications. DOI: 10.1038/ncomms1912.
Authors: Fahad Sultan, Mark Augath, Salah Hamodeh, Yusuke Murayama, Axel Oeltermann, Alexander Rauch, Peter Thier.

Contacts

Dr. Fahad Sultan
Hertie-Institut für klinische Hirnforschung (HIH),
Universitätsklinikum Tübingen,
Zentrum für Neurologie
Telefon: 07071-2980464
E-Mail: fahad.sultan@uni-tuebingen.de
Hertie-Institut für klinische Hirnforschung
Externe Pressestelle :
Kirstin Ahrens
Telefon: 07073-500 724, Mobil: 0173-300 53 96
mail@kirstin-ahrens.de
Universitätsklinikum Tübingen
Presse- und Öffentlichkeitsarbeit
Dr. Ellen Katz
Telefon: 07071-29 80 112
Mail: Ellen.Katz@med.uni-tuebingen.de

Kirstin Ahrens | idw
Further information:
http://www.uni-tuebingen.de

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>