Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Family tree for orchids explains their astonishing variability

04.09.2015

Orchids, a fantastically complicated and diverse group of flowering plants, have long blended the exotic with the beautiful. Most species live on trees, often in remote, tropical mountains. Their flowers can be strange -- one even flowers underground, and many species deceive their pollinators into thinking they are good to eat.

Some are florist's staples, like phalaenopsis, the hot-pink and white flower that is easy to grow and easier to sell. Beyond the "job" of looking beautiful, only the vanilla orchids have any commercial role.


The genus Mormolyca is native to Central America and nearby regions.

Credit: David Tenenbaum/University of Wisconsin-Madison

The estimated 25,000 orchid species outnumber mammals, reptiles and birds combined.

Previously, botanists have proposed more than a half dozen explanations for this diversity. Now, research from the University of Wisconsin-Madison, published last week in Proceedings of the Royal Society B, corroborates many of these explanations, but finds no evidence for other logical suggestions, such as that deceitful pollination.

"It was surprising that many classic characteristics of orchids -- the tiny, dust-like seeds, the role of fungi in triggering germination, the fused male-female flower parts that define the orchid flower -- did not trigger the acceleration in species formation," says Thomas Givnish, a professor of botany and first author of the new study.

To build a family tree for the orchids, the scientists sequenced genes in the green structures, called chloroplasts, in which plants transform solar energy into sugar. The researchers looked at chloroplasts from 39 species, strategically placed throughout the orchid family, then added genetic data on 150 more species. By tying their molecular family to fossils of known ages, Givnish and his colleagues created a branching structure that indicated how many million years ago each major group of orchids appeared.

Then, based on the numbers of species known in each of these groups today, the researchers were able to calculate the rate of species diversification in each and test the many putative causes of the explosion in orchid species. They found that the factors that most greatly accelerated the formation of new species were life in extensive mountain ranges (like the Andes and New Guinea Highlands); the evolution of epiphytism (life in the trees); pollination by orchid bees, moths, or butterflies; and origin of pollinia (packages of hundreds to thousands of pollen grains dispersed as a unit).

Givnish and his colleagues found that initially, orchids speciated no more rapidly than their closest relatives, and at a slow rate relative to flowering plants as a whole. Then there were three waves of accelerated speciation beginning 60, 40 and 33 million years ago. Pollinia apparently sparked the first acceleration in speciation, Givnish says. The origin of epiphytism -- and the invasion in tropical mountains with a constant swirl of clouds and rain -- sparked the second, greater acceleration. The invasion of the Andes as they were being uplifted triggered the third and greatest acceleration.

Interestingly, a surprising number of proposed explanations for orchid diversity failed the new test. Not even deceitful pollination (present in about one-third of all orchid species) was linked to accelerated speciation, Givnish says. "Orchids, almost alone among flowering plants, have a large number of species that lure pollinators by mimicking a mate, or a nesting site or food resources -- 'lies all for the sake of love' -- but such deceit seems to have played no role in accelerating the formation of new orchid species."

Chloroplasts were a useful source of DNA for the study, Givnish says. "There are thousands of chloroplasts per cell, and many loops of DNA per chloroplast, and the genome structure is quite stable." Mercedes Ames of the UW-Madison Department of Botany sequenced most of the chloroplast genomes.

Other UW-Madison collaborators included Daniel Spalink, Alejandro Zuluaga, and orchid specialist Kenneth Cameron, director of the Wisconsin State Herbarium. Collaborators in Australia and Chile provided DNA for the study, and W. Mark Whitten and Norris Williams of the University of Florida provided genetic data.

Looking at the orchids as a family, Givnish finds "not one spark for their extraordinary diversification, but many. Many hypotheses advanced by previous investigators proved to be correct, but some of the defining characteristics of orchids -- their tiny seeds, their requirement for fungi to germinate, and their fused pistils and anthers -- were not themselves responsible for the high rate of orchid speciation. Only later, when the orchids acquired pollinia, started to grow in trees, and then colonized the cloud forests along extensive mountain ranges in the tropics, did the orchids' unrivalled diversification begin."

###

DOWNLOAD PHOTOS: https://uwmadison.box.com/orchids

Media Contact

Thomas Givnish
givnish@wisc.edu
608-265-5473

 @UWMadScience

http://www.wisc.edu 

Thomas Givnish | EurekAlert!

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>